Termination and Divergence Are Undecidable Under a Maximum Progress Multi-step Semantics for LinCa

  • Mila Majster-Cederbaum
  • Christoph Minnameier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4281)


We introduce a multi-step semantics MTS-mp for LinCa which demands maximum progress in each step, i.e. which will only allow transitions that are labeled with maximal (in terms of set inclusion) subsets of the set of enabled actions. We compare MTS-mp with the original ITS-semantics for LinCa specified in [CJY94] and with a slight modification of the original MTS-semantics specified in [CJY94]. Given a LinCa-process and a Tuple Space configuration, the possible transitions under our MTS-mp-semantics are always a subset of the possible transitions under the presented MTS-semantics for LinCa.

We compare the original ITS-semantics and the presented MTS-semantics with our MTS-mp-semantics, and as a major result, we will show that under MTS-mp neither termination nor divergence of LinCa processes is decidable. In contrast to this [BGLZ04], in the original semantics for LLinCa [CJY94] termination is decidable.


Transition System Clock Cycle Transition Sequence Label Transition System Observable Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BGLZ04]
    Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Adding Quantitative Information to Tuple Space Coordination Languages, Bologna, Italy (July 2004)Google Scholar
  2. [BGM00]
    de Boer, F.S., Gabbrielli, M., Meo, M.C.: A Timed Linda Language. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 299–304. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. [BGZ00]
    Busi, N., Gorrieri, R., Zavattaro, G.: On the Expressiveness of Linda Coordination Primitives. Information and Computation 156(1-2), 90–121 (2000)CrossRefMathSciNetMATHGoogle Scholar
  4. [BZ05]
    Busi, N., Zavattaro, G.: Prioritized and Parallel Reactions in Shared Data Space Coordination Languages. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 204–219. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. [CJY94]
    Ciancarini, P., Jensen, K.K., Yankelevich, D.: On the Operational Semantics of a Coordination Language. In: Tokoro, M., Pareschi, R. (eds.) ECOOP 1994. LNCS, vol. 821, pp. 77–106. Springer, Heidelberg (1994)Google Scholar
  6. [M67]
    Minksy, M.L.: Computation: finite and infinite machines. Prentice Hall, Englewoof Cliffs (1967)Google Scholar
  7. [SS63]
    Sheperdson, J.C., Sturgis, J.E.: Computability of recursive functions. Journal of the ACM 10, 217–255 (1963)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mila Majster-Cederbaum
    • 1
  • Christoph Minnameier
    • 1
  1. 1.Institut für InformatikUniversität MannheimGermany

Personalised recommendations