Advertisement

Verification Constraint Problems with Strengthening

  • Aaron R. Bradley
  • Zohar Manna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4281)

Abstract

The deductive method reduces verification of safety properties of programs to, first, proposing inductive assertions and, second, proving the validity of the resulting set of first-order verification conditions. We discuss the transition from verification conditions to verification constraints that occurs when the deductive method is applied to parameterized assertions instead of fixed expressions (e.g., p 0 + p 1 j + p 2 k ≥0, for parameters p 0, p 1, and p 2, instead of 3 + jk ≥0) in order to discover inductive assertions. We then introduce two new verification constraint forms that enable the incremental and property-directed construction of inductive assertions. We describe an iterative method for solving the resulting constraint problems. The main advantage of this approach is that it uses off-the-shelf constraint solvers and thus directly benefits from progress in constraint solving.

Keywords

Ranking Function Constraint System Safety Property Constraint Problem Invariant Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiken, A.: Introduction to set constraint-based program analysis. Science of Computer Programming 35, 79–111 (1999)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Aiken, A., Wimmers, E. Solving systems of set constraints. In: LICS, pp. 329–340 (1992)Google Scholar
  3. 3.
    Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear loops. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 488–502. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Colón, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Colón, M.A., Sipma, H.B.: Practical methods for proving program termination. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Cousot, P.: Proving program invariance and termination by parametric abstraction, lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the variables of a program. In: 5th ACM Symp. Princ. of Prog. Lang., January 1978, pp. 84–97 (1978)Google Scholar
  12. 12.
    Katz, S.M., Manna, Z.: A closer look at termination. Acta Informatica 5(4), 333–352 (1975)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New York (1995)Google Scholar
  14. 14.
    Papachristodoulou, A., Prajna, S.: On the construction of lyapunov functions using the sum of squares decomposition. In: CDC (2002)Google Scholar
  15. 15.
    Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Petri net analysis using invariant generation. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 682–701. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant generation using Gröbner bases. In: 31th ACM Symp. Princ. of Prog. Lang., Venice, Italy, January 2004, pp. 318–329 (2004)Google Scholar
  21. 21.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Fixed point iteration for computing the time elapse operator. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 537–551. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aaron R. Bradley
    • 1
  • Zohar Manna
    • 1
  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA

Personalised recommendations