Abstract
Given a class C of codes. A regular code in C is called prime if it cannot be decomposed as a catenation of at least two non-trivial regular codes in C. The prime decomposition problem for the class C of codes consists in decomposing regular codes in C into prime factors in C. In this paper, a general approach to this problem is proposed, by means of which solutions for the prime decomposition problem are obtained, in a unified way, for several classes of codes. These classes are all subclasses of prefix codes and can be defined by binary relations.
Keywords
- Code
- invariant relation
- prime decomposition problem
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Berstel, J., Perrin, D.: Theory of Codes. Academic Press, New York (1985)
Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Linear-time prime decomposition of regular prefix codes. Int. J. Found. Comput. Sci. 14, 1019–1032 (2003)
Han, Y.-S., Wang, Y., Wood, D.: Infix-free regular expressions and languages. Int. J. Found. Comput. Sci. 17, 379–394 (2006)
Han, Y.-S., Wood, D.: Outfix-free regular languages and prime outfix-free decomposition. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 96–109. Springer, Heidelberg (2005)
Hung, K.V.: On maximality for some kinds of codes over two-letter alphabets. Acta Math. Vietnam. 31, 17–30 (2006)
Hung, K.V., Huy, P.T., Long Van, D.: On some classes of codes defined by binary relations. Acta Math. Vietnam. 29, 163–176 (2004)
Hung, K.V., Huy, P.T., Long Van, D.: Codes concerning roots of words. Vietnam J. Math. 32, 345–359 (2004)
Hung, K.V., Khang, N.Q.: An embedding algorithm for supercodes and sucypercodes. Vietnam J. Math. 33, 119–206 (2005)
Hopcroft, J., Ullman, J.: Formal Languages and Their Relation to Automata. Addison-Wesley Publishing Company, MA (1969)
Ito, M., Jürgensen, H., Shyr, H., Thierrin, G.: Outfix and infix codes and related classes of languages. J. Comput., Syst. Sci. 43, 484–508 (1991)
Ito, M., Thierrin, G.: Congruences, infix and cohesive prefix codes. Theoret. Comput. Sci. 136, 471–485 (1994)
Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 511–607. Springer, Heidelberg (1997)
Mateescu, A., Salomaa, A., Yu, S.: On the decomposition of finite languages, Technical Report 222, TUCS (1998)
Mateescu, A., Salomaa, A., Yu, S.: Factorizations of languages and commutativity conditions. Acta Cyber 15, 339–351 (2002)
Shyr, H.: Free Monoids and Languages. Hon Min Book Company, Taichung (1991)
Long Van, D.: On a class of hypercodes. In: Ito, M., Imaoka, T. (eds.) Words, Languages and Combinatorics III, pp. 171–183. World Scientific, Singapore (2003)
Long Van, D., Hung, K.V.: An approach to the embedding problem for codes defined by binary relations. In: Proceedings of CAI, Greece, pp. 111–127 (2005)
Long Van, D., Hung, K.V.: Characterizations of some classes of codes defined by binary relations. In: Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and Applications, vol. 66, pp. 391–410. World Scientific, Singapore (2006)
Long Van, D., Van Hung, K., Huy, P.T.: Codes and length-increasing transitive binary relations. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 29–48. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Van Hung, K., Van, D.L. (2006). Prime Decomposition Problem for Several Kinds of Regular Codes. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds) Theoretical Aspects of Computing - ICTAC 2006. ICTAC 2006. Lecture Notes in Computer Science, vol 4281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11921240_15
Download citation
DOI: https://doi.org/10.1007/11921240_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48815-6
Online ISBN: 978-3-540-48816-3
eBook Packages: Computer ScienceComputer Science (R0)