Segmentation-Based Registration of Organs in Intraoperative Video Sequences

  • James Goddard
  • Timothy Gee
  • Hengliang Wang
  • Alexander M. Gorbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)


Intraoperative optical imaging of exposed organs in visible, near-infrared, and infrared (IR) wavelengths in the body has the potential to be useful for real-time assessment of organ viability and image guidance during surgical intervention. However, the motion of the internal organs presents significant challenges for fast analysis of recorded 2D video sequences. The movement observed during surgery, due to respiration, cardiac motion, blood flow, and mechanical shift accompanying the surgical intervention, causes organ reflection in the image sequence, making optical measurements for further analysis challenging. Correcting alignment is difficult in that the motion is not uniform over the image. This paper describes a Canny edge-based method for segmentation of the specific organ or region under study, along with a moment-based registration method for the segmented region. Experimental results are provided for a set of intraoperative IR image sequences.


Video Sequence Image Sequence Discrete Fourier Transform Image Registration Canny Edge Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorbach, A., Simonton, D., Hale, D.A., Swanson, S.J., Kirk, A.: Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging. Am. J. Transplant. 3(8), 988–993 (2003)CrossRefGoogle Scholar
  2. 2.
    Gorbach, A.M., Heiss, J.D., Kopylev, L., Oldfield, E.: Intraoperative infrared imaging of brain tumors. J. Neurosurg. 101(6), 960–969 (2004)CrossRefGoogle Scholar
  3. 3.
    Reuthebuch, O., Haussler, A., Genoni, M., Tavakoli, R., Odavic, D., Kadner, A., Novadaq, T.M.: SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest 125(2), 418–424 (2004)CrossRefGoogle Scholar
  4. 4.
    Mitsuta, H., Ohdan, H., Fudaba, Y., Irei, T., Tashiro, H., Itamoto, T., Asahara, T.: Near-infrared spectroscopic analysis of hemodynamics and mitochondrial redox in right lobe grafts in living-donor liver transplantation. Am. J. Transplant. 6(4), 797–805 (2006)CrossRefGoogle Scholar
  5. 5.
    Bardera, M., Feixas, I.B.: Normalized similarity measures for medical image registration. In: SPIE Medical Imaging, Proceedings of SPIE, vol. 5370 (2004)Google Scholar
  6. 6.
    Pluim, J., Maintz, J., Viergever, M.: Mutual information based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22(8) (2003)Google Scholar
  7. 7.
    Ruiz-Alzola, J., Suarez, E., Alberola-Lopez, C., Warfield, S.K., Westin, C.-F.: Geostatistical Medical Image Registration. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 894–901. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Maintz, J., van den Elsen, P., Viergever, M.: 3D multimodality image registration using morphological tools. In: Image and Vision Computing, vol. 19. Elsevier, Amsterdam (2001)Google Scholar
  9. 9.
    Sorzano, C., Thevenaz, P., Unser, M.: Elastic Registration of Biological Images UsingVector-Spline Regularization. IEEE Transactions on Biomedical Engineering 52(4), 652–663 (2005)CrossRefGoogle Scholar
  10. 10.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: DARPA Image Understanding Workshop, DARPA, pp. 121–130 (1981)Google Scholar
  11. 11.
    Maes, F.: Medical image registration using mutual information. Proceedings of the IEEE 91(10), 1699–1721 (2003)CrossRefGoogle Scholar
  12. 12.
    Davatzikos, C., Prince, J.L., Bryan, R.N.: Image Registration Based on Boundary Mapping. IEEE Transactions on Medical Imaging 15(1) (February 1996)Google Scholar
  13. 13.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8(6), 679–698 (1986)CrossRefGoogle Scholar
  14. 14.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I. Addison-Wesley, Reading (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • James Goddard
    • 1
  • Timothy Gee
    • 1
  • Hengliang Wang
    • 2
  • Alexander M. Gorbach
    • 3
  1. 1.Image Science and Machine Vision Group, Oak Ridge National LaboratoryOak Ridge
  2. 2.Naval Medical Research CenterSilver Spring
  3. 3.National Institutes of HealthBethesda

Personalised recommendations