Motion Detection Using an Improved Colour Model

  • Horst Wildenauer
  • Philipp Blauensteiner
  • Allan Hanbury
  • Martin Kampel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)


We discuss common colour models for background subtraction and problems related to their utilisation. A novel approach to represent chrominance information more suitable for robust background modelling and shadow suppression is proposed. Our method relies on the ability to represent colours in terms of a 3D-polar coordinate system having saturation independent of the brightness function; specifically, we build upon an Improved Hue, Luminance, and Saturation space (IHLS). The additional peculiarity of the approach is that we deal with the problem of unstable hue values at low saturation by modelling the hue-saturation relationship using saturation-weighted hue statistics. The effectiveness of the proposed method is shown in an experimental comparison with approaches based on Normalised RGB, c 1 c 2 c 3, and HSV.


False Alarm Rate Receiver Operating Characteristic Motion Detection Foreground Pixel Shadow Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gevers, T., Smeulders, A.W.: Colour-based object recognition. Pattern Recognition 32, 435–464 (1999)CrossRefGoogle Scholar
  2. 2.
    Hong, D., Woo, W.: A Background Subtraction for Vision-based User Interface. In: 4th Intl. Conference on Information, Communications and Signal Processing and Fourth IEEE Pacific-Rim Conference on Multimedia, pp. 263–267 (2003)Google Scholar
  3. 3.
    McKenna, S., Jabri, S., Duric, Z., Wechsler, H., Rosenfeld, A.: Tracking Groups of People. Computer Vision and Image Understanding 80, 42–56 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ferryman, J., Borg, M., Thirde, D., Fusier, F., Valentin, V., Brémond, F., Thonnat, M., Aguilera, J., Kampel, M.: Automated Scene Understanding for Airport Aprons. In: Australian Joint Conference on Artificial Intelligence, Australia, pp. 593–503 (2005)Google Scholar
  5. 5.
    Horprasert, T., Harwood, D., Davis, L.: A Statistical Approach for Real-time Robust Background Subtraction and Shadow Detection. In: IEEE Conference on Computer Vision, FRAME-RATE Workshop (1999)Google Scholar
  6. 6.
    Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Computer Vision and Image Understanding 95(2), 238–259 (2004)CrossRefGoogle Scholar
  7. 7.
    François, A.R.J., Medioni, G.G.: Adaptive Color Background Modeling for Real-Time Segmentation of Video Streams. In: International Conference on Imaging Science, Systems, and Technology, pp. 227–232 (1999)Google Scholar
  8. 8.
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A., Sirotti, S.: Improving Shadow Suppression in Moving Object Detection with HSV Color Information. In: Intelligent Transport Systems, pp. 334–339. IEEE, Los Alamitos (2001)Google Scholar
  9. 9.
    Hanbury, A., Kropatsch, W.G.: Colour Statistics for Matching in Image Databases. In: Beleznai, C., Schoegl, T. (eds.) 27th OEAGM Workshop, Austria (2003)Google Scholar
  10. 10.
    Hanbury, A.: A 3D-polar coordinate colour representation well adapted to image analysis. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 804–811. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Mardia, K.V.: Satistics of Directional Data. Academic Press, London (1972)Google Scholar
  12. 12.
    Finlayson, G.D., Schiele, B., Crowley, J.L.: Comprehensive Colour Image Normalization. In: 5th European Conference on Computer Vision, pp. 475–490 (1998)Google Scholar
  13. 13.
    Wren, C.R., Azarbayejami, A., Darrel, T., Pentland, A.: Pfinder: Real-Time Tracking of the Human Body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)CrossRefGoogle Scholar
  14. 14.
    Kender, J.R.: Saturation, Hue and Normalized Colors: Calculation, Digitisation Effects, and Use. Technical report, Department of Computer Science, Carnegie Mellon University (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Horst Wildenauer
    • 1
  • Philipp Blauensteiner
    • 1
  • Allan Hanbury
    • 1
  • Martin Kampel
    • 1
  1. 1.Pattern Recognition and Image Processing GroupTU ViennaViennaAustria

Personalised recommendations