A Semi-automatic 3D Reconstruction Algorithm for Telepresence

  • Michel Sarkis
  • Klaus Diepold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)


The use of three dimensional computer based models has increased tremendously in the last decades. This is due to the need of numerous emerging applications like telepresence and virtual reality. In the context of telepresence, this paper implements a semi-automatic 3D model reconstruction algorithm from stereo images. The major contribution in this work lies in three main parts: calibration, stereo correspondences, and 3D objects alignement. It is semi-automatic since the calibration technique requires some intervention. However, this will add the ability to change the zoom during the acquisition process.


Iterative Close Point Stereo Image Coarse Level Stereo Match Stereo Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kropatsch, W.G., Bischof, H. (eds.): Digital Image Analysis, 1st edn. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  2. 2.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  3. 3.
    Pollefeys, M., Koch, R., Van Gool, L.J.: A simple and efficient rectification method for general motion. In: International Conference on Computer Vision, pp. 496–501 (1999)Google Scholar
  4. 4.
    Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Machine Vision and Applications 12(1), 16–22 (2000)CrossRefGoogle Scholar
  5. 5.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1), 7–42 (2001)CrossRefGoogle Scholar
  6. 6.
    Bouguet, J.Y.: Camera calibration toolbox for matlab (2003)Google Scholar
  7. 7.
    Trucco, E., Verri, A.: Introductory techniques for 3-D computer vision, 1st edn. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  8. 8.
    Ballantyne, G.H.: Robotic surgery, telerobotic surgery, telepresence, and telementoring. Springer Link 16(10), 1389–1402 (2002)Google Scholar
  9. 9.
    Burkert, T., Leupold, J., Passig, G.: A photorealistic predictive display. Presence: teleoperators and virtual environments 13(1), 22–43 (2004)CrossRefGoogle Scholar
  10. 10.
    Horaud, R., Csurka, G., Demirdijian, D.: Stereo calibration from rigid motions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1446–1452 (2000)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Hung, Y.S.: A stratified self-calibration method for a stereo rig in planar motion with varying intrinsic parameters. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 318–325. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Koch, R.: 3-D scene modeling from image sequences. ISPRS Archives XXXIV(3) (September 2003)Google Scholar
  13. 13.
    Middleburry stereo data sets,
  14. 14.
    Kostkova, J., Sara, R.: Stratifed dense matching for stereopsis in complex structures. In: Britich Machine Vision Conference (2003)Google Scholar
  15. 15.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: International Conference on Computer Vision (2001)Google Scholar
  16. 16.
    Cox, I.J., Higorani, S.L., Rao, S.B., Maggs, B.M.: A maximum likelihood stereo algorithm. Computer Vision and Image Understanding 63(3) (1996)Google Scholar
  17. 17.
    Šára, R.: Finding the largest unambiguous component of stereo matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 900–914. Springer, Heidelberg (2002)Google Scholar
  18. 18.
    Falkenhagen, L.: Hierarchical block based disparity estimation considering neighbourhood constraints. In: International workshop on SNHC and 3D Imaging (1997)Google Scholar
  19. 19.
    Leung, C., Appleton, B., Sun, C.: Fast stereo matching by iterated dynamic programming and quadtree subregioning. In: Britich Machine Vision Conference (2004)Google Scholar
  20. 20.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 1st edn. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  21. 21.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, p. 298. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Third International Conference on 3D Digital Imaging and Modeling (2001)Google Scholar
  23. 23.
    Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6) (2004)Google Scholar
  24. 24.
    Zhao, W., Nister, D., Hsu, S.: Alignment of continuous video onto 3d point clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michel Sarkis
    • 1
  • Klaus Diepold
    • 1
  1. 1.Institute for Data Processing (LDV)Technische Universität München (TUM)MunichGermany

Personalised recommendations