Invertible Polygonalization of 3D Planar Digital Curves and Application to Volume Data Reconstruction

  • Martine Dexet
  • David Cœurjolly
  • Eric Andres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)


In this paper, we describe a new algorithm to compute in linear time a 3D planar polygonal curve from a planar digital curve, that is a curve which belongs to a digital plane. Based on this algorithm, we propose a new method for converting the boundary of digital volumetric objects into polygonal meshes which aims at providing a topologically consistent and invertible reconstruction, i.e. the digitization of the obtained object is equal to the original digital data. Indeed, we do not want any information to be added or lost. In order to limit the number of generated polygonal faces, our approach is based on the use of digital geometry tools which allow the reconstruction of large pieces of planes.


Polygonal Mesh Standard Plane Visibility Cone Plane Recognition Marching Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: SIGGRAPH, Computer Graphics (ACM), Anaheim, USA, vol. 21, pp. 163–169 (1987)Google Scholar
  2. 2.
    Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. JGT 8, 1–15 (2003)Google Scholar
  3. 3.
    Nielson, G.M.: Dual marching cubes. In: IEEE Visualization, pp. 489–496. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  4. 4.
    Montani, C., Scateni, R., Scopigno, R.: Discretized marching cubes. In: Proceedings of the Conference on Visualization, Los Alamitos, CA, USA, pp. 281–287 (1994)Google Scholar
  5. 5.
    Lachaud, J.O., Montanvert, A.: Continuous analogs of digital boundaries: A topological approach to iso-surfaces. Graph. Mod. and Im. Proc. 62, 129–164 (2000)Google Scholar
  6. 6.
    Françon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 425–434. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 356–366. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Sivignon, I., Dupont, F., Chassery, J.-M.: Reversible polygonalization of a 3D planar discrete curve: Application on discrete surfaces. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 347–358. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Andres, E.: Discrete linear objects in dimension n: the Standard model. Graphical Models 65, 92–111 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Buzer, L.: A linear incremental algorithm for Naive and Standard digital lines and planes recognition. Graphical models 65, 61–76 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Gerard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Applied Mathematics 151, 169–183 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vittone, J., Chassery, J.-M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Dexet, M., Andrès, É.: A generalized preimage for the standard and supercover digital hyperplane recognition. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 639–650. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Cœurjolly, D., Zerarga, L.: Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids. Computer and Graphics 30, 46–53 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martine Dexet
    • 1
  • David Cœurjolly
    • 2
  • Eric Andres
    • 1
  1. 1.Laboratoire SIC - E.A. 4103Université de PoitiersFrance
  2. 2.Laboratoire LIRIS - CNRS UMR 5205Université Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations