A Method for the Automatic Analysis of Colour Category Pixel Shifts During Dichromatic Vision

  • Mike Bennett
  • Aaron Quigley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)


In this paper we present a method for automatically evaluating the amount of colour changes images undergo when perceived by individuals with colour deficient vision. This measure enables the classification of images based on the extent images visually change when viewed by people with one of the three classes of dichromatic (protanopia, deuteranopia, and tritanopia) colour vision. By measuring the extent that colour images appear perceptually different a designer, or automated layout technique, will have an indication of whether the choice of colour usage in an image could lead to colour ambiguity or colour confusions.


Colour Vision Colour Usage Percentage Indicator Colour Defective Vision Human Visual System Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunt, R.: Measuring Colour, 3rd edn. Fountain Press (2001)Google Scholar
  2. 2.
    Hurvich, L.M.: Color Vision. Sinauer Associates Inc. (1981)Google Scholar
  3. 3.
    Berlin, B., Kay, P.: Basic Color Terms: Their Universality and Evolution. University of California Press, London (1969)Google Scholar
  4. 4.
    Mollon, J.D., Pokorny, J., Knoblauch, K.: Normal and Defective Colour Vision. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  5. 5.
    Bruce, V., Green, P.R., Georgeson, M.A.: Visual Perception: Physiology, Psychology and Ecology. Psychology, Hove (1996)Google Scholar
  6. 6.
    Palmer, S.E.: Vision Science: Photons to Phenomenlogy. MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Meyer, G., Greenberg, D.: Color-defective vision and computer graphics displays. IEEE Computer Graphics and Applications 8, 28–40 (1988)CrossRefGoogle Scholar
  8. 8.
    Brettel, H., Viénot, F., Mollon, J.D.: Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America. A, Optics and image science 14, 2647–2655 (1997)CrossRefGoogle Scholar
  9. 9.
    Dougherty, R., Wade, A.: Vischeck (2006),
  10. 10.
    Becker, S., Tu, C., Kim, H.: Software tools for the effective use of color in web designs. In: Proceedings of the 2004 National Conference on Digital Government Research, Seattle, Washington, pp. 385–386 (2004)Google Scholar
  11. 11.
    Dougherty, R., Wade, A.: Daltonize algorithm (2006),
  12. 12.
    Rasche, K., Geist, R., Westall, J.: Re-coloring images for gamuts of lower dimension. In: Alexa, M., Marks, J. (eds.) Eurographics, The Eurographics Association, vol. 24. Blackwell Publishing, Malden (2005)Google Scholar
  13. 13.
    Carney, T., Klein, S.A., Tyler, C.W., Silverstein, A.D., Beutter, B., Levi, D., Watson, A.B., Reeves, A.J., Norcia, A.M., Chen, C.C., Makous, W., Eckstein, M.P.: The development of an image/threshold database for designing and testing human vision models. In: Human Vision, Visual Processing, and Digital Display IX, Proc. SPIE, vol. 3644, pp. 542–551 (1999)Google Scholar
  14. 14.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)Google Scholar
  15. 15.
    Kay, P.: Color categorization. MIT Encyclopedia of the cognitive sciences (1999)Google Scholar
  16. 16.
    Lammens, J.M.G.: A Computational Model of Color Perception and Color Naming. PhD thesis, State University of New York at Buffalo (Computer Science) (1994)Google Scholar
  17. 17.
    Belpaeme, T.: Factors influencing the origins of colour categories. PhD thesis, Artificial Intelligence Lab, Vrije Universiteit Brussel (2002)Google Scholar
  18. 18.
    Yendrikhovskij, S.N.: Computing color categories from statistics of natural images. Journal of Imaging Science and Technology 45, 409–417 (2001)Google Scholar
  19. 19.
    Saunders, B., van Brakel, J.: Are there non-trivial constraints on colour categorization? Behavioral and Brain Sciences 20, 167–228 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mike Bennett
    • 1
  • Aaron Quigley
    • 1
  1. 1.Imaging, Visualisation & Graphics Lab, Systems Research Group, School of Computer Science & InformaticsUniversity College DublinDublin 4Ireland

Personalised recommendations