Advertisement

Venation Pattern Analysis of Leaf Images

  • James Clarke
  • Sarah Barman
  • Paolo Remagnino
  • Ken Bailey
  • Don Kirkup
  • Simon Mayo
  • Paul Wilkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)

Abstract

The work investigates pattern recognition methods to detect venation patterns on leaves. An automated technique that involves scale space analysis and an automated technique that includes a combination of edge detectors are compared with a manual technique. A small data set of five images is considered in this initial exploratory work and the results are qualitatively evaluated. The results show that the technique involving scale-space analysis is demonstrated to be a promising research direction to pursue.

Keywords

Edge Detection Leaf Lamina Royal Botanic Garden Leaf Image Edge Detection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chase, M., Stevenson, D., Wilkin, P., Rudall, P.: Monocot systematics: a combined analysis. In: Rudall, P., Cribb, P., Cutler, D., Humphries, C. (eds.) Monocotyledons: systematics and evolution, RBG, Kew, UK, pp. 685–730 (1995)Google Scholar
  2. 2.
    Niklas, K.: The evolution of leaf form and function. In: Marshall, B., Roberts, J. (eds.) Leaf development and canopy growth, pp. 1–35. Sheffield Academic Press, Sheffield (2000)Google Scholar
  3. 3.
    Klucking, E.: The classification of leaf venation patterns. Leaf venation patterns. Gebr, vol. 7. Borntraeger Verlagsbuchhandlung (1995)Google Scholar
  4. 4.
    Niklas, K.: A revised classification of the architecture of dicotyledonous leaves. In: Metcalfe, C., Chalk, L. (eds.) Anatomy of the Dicotyledons: Systematic Anatomy of Leaf and Stem, With a Brief History of the Subject, vol. 1, pp. 25–39. Clarendon Press, Oxford (1979)Google Scholar
  5. 5.
    Jensen, R., Ciofani, K., Miramontes, L.: Lines, outlines and landmarks: morphometric analyses of leaves of acer rubrum, acer saccharinum (aceraceae) and their hybrid. Taxon 51(8), 475–492 (2000)Google Scholar
  6. 6.
    The Royal Botanic Gardens, Kew, U., www.kew.org/data/herb_digitisation.html
  7. 7.
    Schindel, D., Miller, S.: Dna barcoding a useful tool for taxonomists. Nature 435, 17 (2005)CrossRefGoogle Scholar
  8. 8.
    IFAS: Ifas extension, drying and preserving plant materials, University of Florida (2006), http://edis.ifas.ufl.edu/EP004
  9. 9.
    Fu, H., Chi, Z.: A two-stage approach for leaf vein extraction. In: IEEE International conference on neural networks and signal processing, vol. 1, pp. 208–211 (2003)Google Scholar
  10. 10.
    Martínez-Pérez, M.E., Hughes, A.D., Stanton, A.V., Thom, S.A., Bharath, A.A., Parker, K.H.: Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 90–97. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Ford, G., Estes, R., Chen, H.: Space scale analysis for image sampling and interpolation. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 165–168 (1992)Google Scholar
  12. 12.
    Marshall, A.: Computer Vision, Models and Inspection. In: Robotics and Automated Systems. World Scientific Publishing, Singapore (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • James Clarke
    • 1
  • Sarah Barman
    • 1
  • Paolo Remagnino
    • 1
  • Ken Bailey
    • 1
  • Don Kirkup
    • 1
  • Simon Mayo
    • 1
  • Paul Wilkin
    • 2
  1. 1.The Digital Imaging Research CentreKingston UniversityUK
  2. 2.The Royal Botanic GardensKewUK

Personalised recommendations