Affine Camera for 3-D Retinal Surface Reconstruction

  • Thitiporn Chanwimaluang
  • Guoliang Fan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)


We study 3D retinal surface reconstruction by using an affine camera due to two following reasons: (1) NIH’s retinal imaging protocols specify a narrow field of view and (2) each retinal image has small depth variation. Specifically, we incorporate the prior knowledge of human retina geometry in the reconstruction process, and introduce a point-based approach to estimate the retinal spherical surface. We also show that lens distortion removal and affine bundle adjustment improve the reconstruction error in terms of the deviation from the underling spherical surface. Simulation results on both synthetic data and real images show the effectiveness and robustness of the proposed algorithm.


Point Cloud Retinal Image Camera Model Stereo Pair Point Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deguchi, K., Kawamata, D., Mizutani, K., Hontani, H., Wakabayashi, K.: 3d fundus shape reconstruction and display from stereo fundus images. IEICE Trans. Inf. & Syst. E83-D, 1408–1414 (2000)Google Scholar
  2. 2.
    Deguchi, K., Noami, J., Hontani, H.: 3d fundus pattern reconstruction and display from multiple images. In: IEEE Int’l conference on Pattern Recognition, vol. 4, pp. 94–97 (2000)Google Scholar
  3. 3.
    Choe, T., Cohen, I., Medioni, G.: 3-d shape reconstruction of retinal fundus. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2277–2284 (2006)Google Scholar
  4. 4.
    Chanwimaluang, T., Fan, G.: Hybrid retinal image registration. IEEE Trans. Information Technology in Biomedicine 10, 129–142 (2006)CrossRefGoogle Scholar
  5. 5.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: IEEE Int’l Conference on Computer Vision, vol. 1, pp. 666–673 (1999)Google Scholar
  6. 6.
    Koenderink, J.J., Van Doorn, A.J.: Affine structure from motion. Journal of Optical Society of America 8, 377–385 (1991)CrossRefGoogle Scholar
  7. 7.
    Quan, L., Mohr, R.: Towards structure from motion for linear features through reference points. In: IEEE Workshop on Visual Motion, pp. 249–254 (1991)Google Scholar
  8. 8.
    Demey, S., Zisserman, A., Beardsley, P.: Affine and projective structure from motion. In: Proc. British Machine Vision Conference (BMVC), pp. 49–58 (1992)Google Scholar
  9. 9.
    Shapiro, L.S.: Affine Analysis of Image Sequences. PhD thesis, Sharp Laboratories of Europe, Oxford, UK (1995)Google Scholar
  10. 10.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization method. Intl. Journal of Computer Vision 9, 137–154 (1992)CrossRefGoogle Scholar
  11. 11.
    Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment: A modern synthesis. In: Vision Algorithms: Theory And Practice. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  13. 13.
    Tresadern, P., Reid, I.: Uncalibrated and unsynchronized human motion capture: a stereo factorization approach. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR, vol. 1, pp. 128–134 (2004)Google Scholar
  14. 14.
    Weinshall, D., Tomasi, C.: Linear and incremental acquisition of invariant shape models from image sequences. In: IEEE Proc. of 4th Int’l Conference on Computer Vision, vol. 17, pp. 512–517 (1993)Google Scholar
  15. 15.
    Weinshall, D., Tomasi, C.: Linear and incremental acquisition of invariant shape models from image sequences. IEEE Trans. pattern Anal. Machine Intell. PAMI 17, 512–517 (1995)CrossRefGoogle Scholar
  16. 16.
    Poleman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. In: Proc. of 3rd European Conference on Computer Vision, pp. 97–108 (1994)Google Scholar
  17. 17.
    Poleman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. Pattern and Machine Intelligent 19, 206–218 (1997)CrossRefGoogle Scholar
  18. 18.
    Quan, L.: Self-calibration of an affine camera from multiple views. International Journal of Computer Vision 19, 93–110 (1996)CrossRefGoogle Scholar
  19. 19.
    Kurata, T., Fujiki, J., Sakaue, K.: Affine epipolar geometry via factorization method. In: Proc. of 14th Int’l Conference on Pattern Recognition, vol. 1, pp. 862–866 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thitiporn Chanwimaluang
    • 1
  • Guoliang Fan
    • 1
  1. 1.School of Electrical and Computer EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations