Dynamic Reconstruction of Complex Planar Objects on Irregular Isothetic Grids

  • Antoine Vacavant
  • David Coeurjolly
  • Laure Tougne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)


The vectorization of discrete regular images has been widely developed in many image processing and synthesis applications, where images are considered as a regular static data. Regardless of final application, we have proposed in [14] a reconstruction algorithm of planar graphical elements on irregular isothetic grids. In this paper, we present a dynamic version of this algorithm to control the reconstruction. Indeed, we handle local refinements to update efficiently our complete shape representation. We also illustrate an application of our contribution for interactive approximation of implicit curves by lines, controlling the topology of the reconstruction.


Height Function Interval Arithmetic Irregular Grid Polygonal Approximation Reeb Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coeurjolly, D.: Supercover Model and Digital Straight Line Recognition on Irregular Isothetic Grids. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 311–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Coeurjolly, D., Zerarga, L.: Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids. Computer and Graphics 30(1), 46–53 (2006)CrossRefGoogle Scholar
  3. 3.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphical models and image processing: GIMP 57(6), 453–461 (1995)CrossRefGoogle Scholar
  4. 4.
    Cordella, L.P., Vento, M.: Symbol recognition in documents: a collection of techniques? International Journal on Document Analysis and Recognition 3(2), 73–88 (2000)CrossRefGoogle Scholar
  5. 5.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition in linear time. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 371–382. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    de Figueiredo, L.H., Van Iwaarden, R., Stolfi, J.: Fast interval branch-and-bound methods for unconstrained global optimization with affine arithmetic. Technical Report IC-9708, Institute of Computing, Univ. of Campinas (June 1997)Google Scholar
  7. 7.
    Gramain, A.: Topologie des surfaces. Presses Universitaires Françaises (1971)Google Scholar
  8. 8.
    Hilaire, X., Tombre, K.: Robust and accurate vectorization of line frawings. IEEE Transactions on Pattern Analysis and Machine Intelligence (2005)Google Scholar
  9. 9.
    Kearfott, B.: Interval computations: introduction, uses, and resources. Euromath. Bulletin 2(1), 95–112 (1996)MathSciNetGoogle Scholar
  10. 10.
    Reeb, G.: Sur les points singuliers d’une forme de Pfaff complément intégrable ou d’une fonction numérique. In: Comptes Rendus de L’Académie ses Séances, Paris, vol. 222, pp. 847–849 (1946)Google Scholar
  11. 11.
    Samet, H.: Hierarchical spatial data structures. In: Buchmann, A., Smith, T.R., Wang, Y.-F., Günther, O. (eds.) SSD 1989. LNCS, vol. 409, pp. 193–212. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Sivignon, I., Breton, R., Dupont, F., Andres, E.: Discrete analytical curve reconstruction without patches. Image and Vision Computing 23(2), 191–202 (2005)CrossRefGoogle Scholar
  13. 13.
    Snyder, J.M.: Interval analysis for computer graphics. Computer Graphics 26(2), 121–130 (1992)CrossRefGoogle Scholar
  14. 14.
    Vacavant, A., Coeurjolly, D., Tougne, L.: Topological and geometrical reconstruction of complex objects on irregular isothetic grids. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 470–481. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antoine Vacavant
    • 1
  • David Coeurjolly
    • 2
  • Laure Tougne
    • 1
  1. 1.LIRIS – UMR 5205Université Lumière Lyon 2France
  2. 2.LIRIS – UMR 5205Université Claude Bernard Lyon 1France

Personalised recommendations