Flexible Segmentation and Smoothing of DT-MRI Fields Through a Customizable Structure Tensor

  • Thomas Schultz
  • Bernhard Burgeth
  • Joachim Weickert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4291)


We present a novel structure tensor for matrix-valued images. It allows for user defined parameters that add flexibility to a number of image processing algorithms for the segmentation and smoothing of tensor fields. We provide a thorough theoretical derivation of the new structure tensor, including a proof of the equivalence of its unweighted version to the existing structure tensor from the literature. Finally, we demonstrate its advantages for segmentation and smoothing, both on synthetic tensor fields and on real DT-MRI data.


Structure Tensor Active Contour Model Geodesic Active Contour Additive Operator Split Geodesic Active Contour Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201, 637–648 (1996)Google Scholar
  2. 2.
    Feddern, C., Weickert, J., Burgeth, B.: Level-set methods for tensor-valued images. In: Faugeras, O.D., Paragios, N. (eds.) Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, pp. 65–72. INRIA, Nice, France (2003)Google Scholar
  3. 3.
    Feddern, C., Weickert, J., Burgeth, B., Welk, M.: Curvature-driven PDE methods for matrix-valued images. International Journal of Computer Vision 69, 93–107 (2006)CrossRefGoogle Scholar
  4. 4.
    Chefd’hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Constrained flows of matrix-valued functions: Application to diffusion tensor regularization. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 251–265. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Welk, M., Feddern, C., Burgeth, B., Weickert, J.: Median filtering of tensor-valued images. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 17–24. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Westin, C.F., Knutsson, H.: Tensor field regularization using normalized convolution. In: Moreno-Diaz, R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 564–572. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Rodríguez-Florido, M.A., Ruiz-Alzola, J., Westin, C.F.: DT-MRI regularization using anisotropic tensor field filtering. In: Proc. 2004 IEEE International Symposium on Biomedical Imaging, Arlington, VA, USA, pp. 336–339 (2004)Google Scholar
  8. 8.
    Wiegell, M.R., Tuch, D., Larsson, H.B., Wedeen, V.J.: Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage 19, 391–401 (2003)CrossRefGoogle Scholar
  9. 9.
    Rousson, M., Lenglet, C., Deriche, R.: Level set and region based surface propagation for diffusion tensor MRI segmentation. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA 2004. LNCS, vol. 3117, pp. 123–134. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Vemuri, B.C.: An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: Proc. 2004 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 228–233 (2004)Google Scholar
  11. 11.
    Jonasson, L., Bresson, X., Hagmann, P., Cuisenaire, O., Meuli, R., Thiran, J.P.: White matter fiber tract segmentation in DT-MRI using geometric flows. Medical Image Analysis 9, 223–236 (2005)CrossRefGoogle Scholar
  12. 12.
    Kindlmann, G.L.: Visualization and Analysis of Diffusion Tensor Fields. PhD thesis, School of Computing, University of Utah (2004),
  13. 13.
    Di Zenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing 33, 116–125 (1986)CrossRefGoogle Scholar
  14. 14.
    Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance B, 209–219 (1996)Google Scholar
  15. 15.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. Fifth International Conference on Computer Vision, pp. 694–699 (1995)Google Scholar
  16. 16.
    Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proc. Fifth International Conference on Computer Vision, pp. 810–815 (1995)Google Scholar
  17. 17.
    Weickert, J.: Anisotropic Diffusion in Image Processing, Teubner, Stuttgart (1998)Google Scholar
  18. 18.
    Kindlmann, G.L.: Superquadric tensor glyphs. In: Joint Eurographics/IEEE Symposium on Visualization, pp. 147–154 (2004)Google Scholar
  19. 19.
    Weickert, J., Kühne, G.: Fast methods for implicit active contour models. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 43–58. Springer, New York (2003)CrossRefGoogle Scholar
  20. 20.
    Sapiro, G.: Vector (self) snakes: a geometric framework for color, texture and multiscale image segmentation. In: Proc. 1996 International Conference on Image Processing, vol. 1, pp. 817–820 (1996)Google Scholar
  21. 21.
    BioPSE: Problem Solving Environment for modeling, simulation, image processing, and visualization for biomedical computing applications. Scientific Computing and Imaging Institute (SCI) (2002),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Schultz
    • 1
  • Bernhard Burgeth
    • 2
  • Joachim Weickert
    • 2
  1. 1.MPI InformatikSaarbrückenGermany
  2. 2.Mathematical Image Analysis Group, Faculty of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations