Mesh Optimisation Using Edge Information in Feature-Based Surface Reconstruction

  • Jun Liu
  • Roger Hubbold
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4291)


One of the most challenging and fundamental problems in computer vision is to reconstruct a surface model given a set of uncalibrated 2D images. Well-established Structure from Motion (SfM) algorithms often result in a sparse set of 3D surface points, but surface modelling based on sparse 3D points is not easy. In this paper, we present a new method to refine and optimise surface meshes using edge information in the 2D images. We design a meshing – edge point detection – re-meshing scheme that can gradually refine the surface mesh until it best fits the true physical surface of the object being modelled. Our method is tested on real images and satisfactory results are obtained.


Surface Reconstruction Delaunay Triangulation Edge Point Edge Information Structure From Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH, pp. 71–78 (1992)Google Scholar
  2. 2.
    Szeliski, R., Tonnesen, D., Terzopoulos, D.: Modeling surfaces of arbitrary topology with dynamic particles. In: CVPR, pp. 82–87 (1993)Google Scholar
  3. 3.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH, pp. 303–312 (1996)Google Scholar
  4. 4.
    Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. CVIU 80(3), 295–314 (2000)MATHGoogle Scholar
  5. 5.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  6. 6.
    Triggs, B.: Autocalibration and the absolute quadric. In: CVPR, p. 609 (1997)Google Scholar
  7. 7.
    Pollefeys, M., Gool, L.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. IJCV 59(3), 207–232 (2004)CrossRefGoogle Scholar
  8. 8.
    Lhuillier, M., Quan, L.: Surface reconstruction by integrating 3D and 2D data of multiple views. In: ICCV, vol. 02, p. 1313 (2003)Google Scholar
  9. 9.
    Lhuillier, M., Quan, L.: A quasi-dense approach to surface reconstruction from uncalibrated images. TPAMI 27(3), 418–433 (2005)Google Scholar
  10. 10.
    Solem, J.E., Heyden, A.: Reconstructing open surfaces from unorganized data points. In: CVPR, vol. 02, pp. 653–660 (2004)Google Scholar
  11. 11.
    Paris, S., Sillion, F., Quan, L.: A surface reconstruction method using global graph cut optimization. IJCV 66(2), 141–161 (2006)CrossRefGoogle Scholar
  12. 12.
    Taylor, C.J.: Surface reconstruction from feature based stereo. In: ICCV, vol. 01, p. 184 (2003)Google Scholar
  13. 13.
    Liu, J., Hubbold, R.: Automatic Camera Calibration and Scene Reconstruction with Scale-Invariant Features. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 558–568. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Morris, D., Kanade, T.: Image-consistent surface triangulation. In: CVPR, vol. 1, pp. 332–338 (2000)Google Scholar
  15. 15.
    Vogiatzis, G., Torr, P., Cipolla, R.: Bayesian stochastic mesh optimisation for 3D reconstruction. In: BMVC, vol. 2, pp. 711–718 (2003)Google Scholar
  16. 16.
    Nakatuji, A., Sugaya, Y., Kanatani, K.: Mesh optimization using an inconsistency detection template. In: ICCV, pp. 1148–1153 (2005)Google Scholar
  17. 17.
    Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In: ICCV, p. 90 (1998)Google Scholar
  18. 18.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, p. 1150 (1999)Google Scholar
  19. 19.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  20. 20.
    Canny, J.: A computational approach to edge detection. TPAMI 8, 679–714 (1986)Google Scholar
  21. 21.
    Goldberger, J., Gordon, S., Greenspan, H.: An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures. In: ICCV, vol. 1, p. 487 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jun Liu
    • 1
  • Roger Hubbold
    • 1
  1. 1.Department of Computer ScienceUniversity of ManchesterManchesterUnited Kingdom

Personalised recommendations