Fusing Features in Direct Volume Rendered Images

  • Yingcai Wu
  • Huamin Qu
  • Hong Zhou
  • Ming-Yuen Chan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4291)


In this paper, we propose a novel framework which can fuse multiple user selected features in different direct volume rendered images into a comprehensive image according to users’ preference. The framework relies on three techniques, i.e., user voting, genetic algorithm, and image similarity. In this framework, we transform the fusing problem to an optimization problem with a novel energy function which is based on user voting and image similarity. The optimization problem can then be solved by the genetic algorithm. Experimental results on some real volume data demonstrate the effectiveness of our framework.


Genetic Algorithm Image Similarity Edge Image Direct Volume Fuse Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baudisch, P., Gutwin, C.: Multiblending: displaying overlapping windows simultaneously without the drawbacks of alpha blending. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 367–374 (2004)Google Scholar
  2. 2.
    Tzeng, F.Y., Lum, E.B., Ma, K.L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics 11, 273–284 (2005)CrossRefGoogle Scholar
  3. 3.
    Weiskopf, D., Engel, K., Ertl, T.: Interactive clipping techniques for texture-based volume visualization and volume shading. IEEE Transactions on Visualization and Computer Graphics 9, 298–312 (2003)CrossRefGoogle Scholar
  4. 4.
    Viola, I., Kanitsar, A., Gröller, M.E.: Importance-driven feature enhancement in volume visualization. IEEE Transactions on Visualization and Computer Graphics 11, 408–418 (2005)CrossRefGoogle Scholar
  5. 5.
    Rheingans, P., Ebert, D.: Volume illustration: Nonphotorealistic rendering of volume models. IEEE Transactions on Visualization and Computer Graphics 7, 253–264 (2001)CrossRefGoogle Scholar
  6. 6.
    Wang, L., Zhao, Y., Mueller, K., Kaufman, A.E.: The magic volume lens: An interactive focus+context technique for volume rendering. In: Proceedings of IEEE Visualization, pp. 367–374 (2005)Google Scholar
  7. 7.
    Kindlmann, G.: Transfer functions in direct volume rendering: Design, interface, interaction. In: Course notes of ACM SIGGRAPH (2002)Google Scholar
  8. 8.
    Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: Design galleries: a general approach to setting parameters for computer graphics and animation. In: Proceedings of ACM SIGGRAPH, pp. 389–400 (1997)Google Scholar
  9. 9.
    Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of Volume Visualization Symposium, pp. 79–86 (1998)Google Scholar
  10. 10.
    Ma, K.L.: Image graps - a novel interface for visual data exploration. In: Proceedings of IEEE Visualization, pp. 81–88 (1999)Google Scholar
  11. 11.
    König, A.H., Gröller, E.M.: Mastering transfer function specification by using volumepro technology. In: Proceedings of Spring Conference on Computer Graphics, pp. 279–286 (2001)Google Scholar
  12. 12.
    Sims, K.: Artificial evolution for computer graphics. In: Proceedings of ACM SIGGRAPH, pp. 319–328 (1991)Google Scholar
  13. 13.
    He, T., Hong, L., Kaufman, A., Pfister, H.: Generation of transfer functions with stochastic search techniques. In: Proceedings of IEEE Visualization, pp. 227–234 (1996)Google Scholar
  14. 14.
    House, D., Bair, A., Ware, C.: On the optimization of visualizations of complex phenomena. In: Proceedings of IEEE Visualization, pp. 87–94 (2005)Google Scholar
  15. 15.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  16. 16.
    Kitware (The visualization toolkit),
  17. 17.
    Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis (1975)Google Scholar
  18. 18.
    Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics processing unit. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2286–2293 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yingcai Wu
    • 1
  • Huamin Qu
    • 1
  • Hong Zhou
    • 1
  • Ming-Yuen Chan
    • 1
  1. 1.Department of Computer Science and EngineeringHong Kong University of Science and Technology 

Personalised recommendations