An Automated System for Contact Lens Inspection

  • A. I. Bazin
  • T. Cole
  • B. Kett
  • M. S. Nixon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4291)


This paper describes a novel method for the industrial inspection of ophthalmic contact lenses in a time constrained production line environment. We discuss the background to this problem, look at previous solutions and relevant allied work before describing our system. An overview of the system is given together with detailed descriptions of the algorithms used to perform the image processing, classification and inspection system. We conclude with a preliminary assessment of the system performance and discuss future work needed to complete the system.


Inspection System Edge Feature Image Processor Edge Fault Manufacturing Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elliott, C.J.: Automatic optical measurement of contact lenses. In: Proc. SPIE Automatic Optical Inspection, Innsbruck, Austria (1986)Google Scholar
  2. 2.
    Pladellorens, J.M., et al.: Analysis and characterization of surface defects in ophthalmic lenses. In: Proc. SPIE - Surface Scattering and Diffraction for Advanced Metrology II, Seattle, WA, United State (2002)Google Scholar
  3. 3.
    Hobbs, P.C.D.: Ideas for fast and cheap object capture. In: Proc. SPIE - Three-Dimensional Imaging, Optical Metrology, and Inspection IV, Boston, MA, USA (1998)Google Scholar
  4. 4.
    Cho, J.H., Cho, M.W., Kim, M.K.: Computer-aided design, manufacturing and inspection system integration for optical lens production. Int’l Journal of Production Research 40(16), 4271–4283 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Gunn, S.R., Nixon, M.S.: A robust snake implementation; a dual active contour. IEEE Trans. PAMI 19(1), 63–68 (1997)Google Scholar
  6. 6.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. PAMI 21(5), 476–480 (1999)Google Scholar
  7. 7.
    Olson, C.E.: Constrained Hough transforms for curve detection. Computer Vision and Image Understanding 73(3), 329–345 (1999)MATHCrossRefGoogle Scholar
  8. 8.
    Xie, Y., Ji, Q.: A new efficient ellipse detection method. In: Proc. 16th Int’l Conf. Pattern Recognition, Quebec City, Que., Canada (2002)Google Scholar
  9. 9.
    Cheng, Z., Liu, Y.: Efficient technique for ellipse detection using restricted randomized Hough transform. In: Proc. Int’l Conf. Information Technology: Coding and Computing, Las Vegas, NV, USA (2004)Google Scholar
  10. 10.
    McLaughlin, R.A.: Randomized Hough transform: improved ellipse detection with comparison. Pattern Recognition Letters 19(3-4), 299–305 (1998)MATHCrossRefGoogle Scholar
  11. 11.
    Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 8(6), 679–698 (1986)Google Scholar
  12. 12.
    Nixon, M.S., Aguardo, A.S.: Feature Extraction & Image Processing. Newnes (2002)Google Scholar
  13. 13.
    Hu, M.K.: Visual Pattern Recognition by Moment Invariants. IRE Trans. Information Theory 8, 179–187 (1962)Google Scholar
  14. 14.
    Bazin, A.I., Nixon, M.S.: Gait verification using probabilistic methods. In: Proc. 7th IEEE Workshop on Applications of Computer Vision, Breckenridge, CO, USA (2005)Google Scholar
  15. 15.
    Quinlan, J.R.: Simplifying decision trees. Int’l Journal of Man-Machine Studies 27(3), 221–234 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. I. Bazin
    • 1
    • 2
  • T. Cole
    • 2
  • B. Kett
    • 2
  • M. S. Nixon
    • 1
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUnited Kingdom
  2. 2.Neusciences, Unit 2Lulworth Business CentreTotton, SouthamptonUnited Kingdom

Personalised recommendations