• Joachim Kneis
  • Daniel Mölle
  • Stefan Richter
  • Peter Rossmanith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)


We introduce divide-and-color, a new technique for the solution of hard graph problems. It is a combination of the well-known divide-and-conquer paradigm and color-coding [2]. Our approach first randomly colors all edges or nodes of a graph black and white, and then solves the problem recursively on the two induced parts.

We demonstrate this technique by giving new randomized algorithms for the solution of two important problems. These yield runtime bounds of O *(4 k ) for finding a simple path of length k and O *(4( h − − 1) k) for finding k edge-disjoint (resp. vertex-disjoint) copies of a graph H with h edges (resp. h nodes) in a given graph. Derandomization gives deterministic algorithms for these problems with running times O *(24 k) and O *(24hk), respectively.

All these results significantly improve over the currently known best bounds. In particular, our generic algorithms beat specialized ones that have been designed to find k triangles or paths of length two.


Hash Function Dynamic Programming Algorithm Longe Path Deterministic Algorithm Recursive Call 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Journal of Random structures and Algorithms 3(3), 289–304 (1992)MATHCrossRefGoogle Scholar
  2. 2.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MATHMathSciNetGoogle Scholar
  3. 3.
    Cesati, M.: Compendium of parameterized problems (2005), Available online at: http://bravo.ce.uniroma2.it/home/cesati/research/compendium.ps
  4. 4.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Fellows, M.R., et al.: Faster fixed-parameter tractable algorithms for matching and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Fredman, M., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst case access time. In: Proc of 23rd FOCS, pp. 165–169 (1982)Google Scholar
  8. 8.
    Liu, Y., Lu, S., Chen, J., Sze, S.-H.: Greedy localization, color-coding, and dynamic programming: Improved algorithms for matching and packing problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: A parameterized view. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Prieto, E., Sloper, C.: Looking at the stars. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 138–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Slot, C.F., van Emde Boas, P.: On tape versus core; an application of space efficient hash functions to the invariance of space. Elektronische Informationsverarbeitung und Kybernetik 21(4/5), 246–253 (1985)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joachim Kneis
    • 1
  • Daniel Mölle
    • 1
  • Stefan Richter
    • 1
  • Peter Rossmanith
    • 1
  1. 1.Department of Computer ScienceRWTH Aachen UniversityFed. Rep. of Germany

Personalised recommendations