Advertisement

A Fixed-Parameter Algorithm for the Minimum Weight Triangulation Problem Based on Small Graph Separators

  • Christian Knauer
  • Andreas Spillner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)

Abstract

We present a fixed-parameter algorithm which computes for a set P of n points in the plane in \(O(2^{c \sqrt{k} \log k} \cdot k \sqrt{k} n^3)\) time a minimum weight triangulation. The parameter k is the number of points in P that lie in the interior of the convex hull of P and \(c = (2 + \sqrt{2})/(\sqrt{3} -- \sqrt{2}) < 11\).

Keywords

Convex Hull Planar Graph Travel Salesman Problem Travel Salesman Problem Computational Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. Annals of Discrete Mathematics 12, 9–12 (1982)MATHGoogle Scholar
  2. 2.
    Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameterized view. Journal of Computer and System Sciences 67, 808–832 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Deineko, V.G., Hoffmann, M., Okamoto, Y., Woeginger, G.J.: The traveling salesman problem with few inner points. Operations Research Letters 34(1), 106–110 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dickerson, M.T., McElfresh, S.A., Montague, M.H.: New algorithms and empirical findings on minimum weight triangulation heuristics. In: Proc. Symposium on Computational Geometry, pp. 238–247. ACM Press, New York (1995)Google Scholar
  5. 5.
    Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph separation. Acta Informatica 34, 231–243 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Grantson, M.: Fixed-parameter algorithms and other results for optimal partitions. Licentiate Thesis, Lund University, Sweden (2004)Google Scholar
  8. 8.
    Grantson, M., Borgelt, C., Levcopoulos, C.: A fixed parameter algorithm for minimum weight triangulation: Analysis and experiments. Technical Report LU-CS-TR:2005-234, Lund University, Sweden (2005)Google Scholar
  9. 9.
    Grantson, M., Borgelt, C., Levcopoulos, C.: Minimum weight triangulation by cutting out triangles. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 984–994. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Grantson, M., Levcopoulos, C.: A fixed-parameter algorithm for the minimum number convex partition problem. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 83–94. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hoffmann, M., Okamoto, Y.: The minimum weight triangulation problem with few inner points. Computational Geometry 34(3), 149–158 (2006)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hwang, R.Z., Chang, R.C., Lee, R.C.T.: The searching over separators strategy to solve some NP-hard problems in subexponential time. Algorithmica 9, 398–423 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kyoda, Y., Imai, K., Takeuchi, F., Tajima, A.: A branch-and-cut approach for minimum weight triangulation. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 384–393. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Levcopoulos, C., Krznaric, D.: Quasi-greedy triangulations approximating the minimum weight triangulation. In: Proc. Symposium on Discrete Algorithms, pp. 392–401. ACM Press, New York (1996)Google Scholar
  15. 15.
    Lingas, A.: Subexponential-time algorithms for minimum weight triangulation and related problems. In: Proc. Canadian Conference on Computational Geometry (1998)Google Scholar
  16. 16.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM Journal on Computing 9, 615–627 (1980)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. Journal of Computer and System Sciences 32, 265–279 (1986)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. In: Proc. Symposium on Computational Geometry, pp. 1–10. ACM Press, New York (2006)Google Scholar
  20. 20.
    Plaisted, D.A., Hong, J.: A heuristic triangulation algorithm. Journal of Algorithms 8, 405–437 (1987)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Remy, J., Steger, A.: A quasi-polynomial time approximation scheme for minimum weight triangulation. In: Proc. Symposium on Theory of Computing, pp. 316–325. ACM Press, New York (2006)Google Scholar
  22. 22.
    Sharir, M., Welzl, E.: On the number of crossing-free matchings (cycles, and partitions). In: Proc. Symposium on Discrete Algorithms, pp. 860–869. ACM Press, New York (2006)CrossRefGoogle Scholar
  23. 23.
    Spillner, A.: A faster algorithm for the minimum weight triangulation problem with few inner points. In: Proc. Algorithms and Complexity in Durham Workshop, pp. 135–146. KCL Publications (2005)Google Scholar
  24. 24.
    Spillner, A.: Optimal convex partitions of point sets with few inner points. In: Proc. Canadian Conference on Computational Geometry, pp. 34–37 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Knauer
    • 1
  • Andreas Spillner
    • 2
  1. 1.Institute of Computer ScienceFreie Universität Berlin 
  2. 2.Institute of Computer ScienceFriedrich-Schiller-Universität Jena 

Personalised recommendations