Advertisement

Circular-Perfect Concave-Round Graphs

  • Sylvain Coulonges
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)

Abstract

For 1≤dkd, K k/d denotes the graph with vertices 0,1,...,k–1, in which i is adjacent to j if and only if d≤|ij|≤kd. A graph G is circular-perfect if, for every induced subgraph H of G, the infinum k/d for which H admits a homomorphism to K k/d is equal to the supremum k/d for which K k/d admits a homomorphism to H. We answer a question af Bang-Jensen and Huang by giving a complete characterization of circular-perfect concave-round graphs.

Keywords

Chromatic Number Complete Characterization Perfect Graph Clique Size Circular Coloring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bang-Jensen, J., Huang, J.: Convex-round graphs are circular-perfect. J. Graph Theory 40(3), 182–194 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berge, C.: Färbungen von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Zeitschrift der Martin-Luther-Universität Halle-Wittenberg 10, 114–115 (1961)Google Scholar
  3. 3.
    Bondy, J.A., Hell, P.: A note on the star chromatic number. Journal of Graph Theory 14, 479–482 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The Strong Perfect Graph Theorem. In: Annals of Mathematics (to appear)Google Scholar
  5. 5.
    Coulonges, S., Pêcher, A., Wagler, A.: Triangle-free strongly circular-perfect graphs. Discrete Mathematics (Submitted)Google Scholar
  6. 6.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)MATHGoogle Scholar
  7. 7.
    Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastos. Mat. 19, 413–431 (1987)MATHMathSciNetGoogle Scholar
  8. 8.
    Lovász, L.: Normal hypergraphs and the weak perfect graph conjecture. Discrete Math. 2, 253–267 (1972)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Reed, B., Ramirez-Alfonsin, J.: Perfect Graphs. Wiley, Chichester (2001)MATHGoogle Scholar
  10. 10.
    Shepherd, F.B.: Applying Lehman’s Theorem to Packing Problems. Math. Programming 71, 353–367 (1995)MathSciNetMATHGoogle Scholar
  11. 11.
    Trotter Jr., L.E.: A Class of Facet Producing Graphs for Vertex Packing Polyhedra. Discrete Math. 12, 373–388 (1975)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vince, A.: Star chromatic number. Journal of Graph Theory 12, 551–559 (1988)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wagler, A.: Antiwebs are rank-perfect. Quarterly Journal of the Belgian, French and Italian OR Societies 2, 149–152 (2004)MATHMathSciNetGoogle Scholar
  14. 14.
    Zhu, X.: circular-perfect Graphs. J. of Graph Th. 48, 186–209 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sylvain Coulonges
    • 1
  1. 1.Laboratoire Bordelais de Recherche Informatique (LaBRI) TalenceFrance

Personalised recommendations