A matching M is called flexible if there exists an alternating cycle with respect to M. Given a graph G=(V,E) and S ⊆ V, a flexible matching M ⊆ E is sought which covers a maximum number of vertices belonging to S. It is proved that the existence of such a matching is decidable in \(\mathcal{O}(|V|\cdot |E|)\) time, and a concrete flexible maximum S-matching can also be found in the same amount of time.


Bipartite Graph Maximum Match Internal Vertex Internal Edge Elementary Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartha, M., Gombás, E.: A structure theorem for maximum internal matchings in graphs. Information Processing Letters 40, 289–294 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bartha, M., Krész, M.: Isolating the families of soliton graphs. Pure Mathematics and Applications 13, 49–62 (2002)MathSciNetGoogle Scholar
  3. 3.
    Bartha, M., Krész, M.: Structuring the elementary components of graphs having a perfect internal matching. Theoretical Computer Science 299, 179–210 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bartha, M., Krész, M.: Tutte type theorems in graphs having a perfect internal matching. Information Processing Letters 91, 277–284 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bartha, M., Krész, M.: Deterministic soliton graphs. Informatica (to appear)Google Scholar
  6. 6.
    Dassow, J., Jürgensen, H.: Soliton automata. J. Comput. System Sci. 40, 154–181 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30, 209–221 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gabow, H.N., Kaplan, H., Tarjan, R.E.: Unique maximum matching algorithms. Journal of Algorithms 40, 159–183 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gallai, T.: Kritische Graphen II. Magyar Tud. Akad. Mat. Kutató Int. Közl 8, 373–395 (1963)MATHMathSciNetGoogle Scholar
  11. 11.
    Golumbic, M.C., Hirst, T., Lewenstein, M.: Uniquely restricted matchings. Algorithmica 31, 139–154 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Groves, M.P., Carvalho, C.F., Prager, R.H.: Switching the polyacetylene soliton. Materials Science and Engineering C3, 181–185 (1995)Google Scholar
  13. 13.
    Levit, V., Mandrescu, E.: Uniquely restricted maximum matchings in unicycle graphs. In: Fifth Haifa Workshop on Interdisciplinary Applications of Graph theory, Combinatorics, and Algorithms, May 16-19 (2005)Google Scholar
  14. 14.
    Lovász, L., Plummer, M.D.: Matching Theory. North Holland, Amsterdam (1986)MATHGoogle Scholar
  15. 15.
    Müller, H.: Alternating cycle free matchings in chordal bipartite graph. Order 7, 11–21 (1990)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Regin, J.C.: The symmetric alldiff constraint. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence, pp. 420–425. Morgan Kaufmann, San Francisco (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Miklós Bartha
    • 1
  • Miklós Krész
    • 2
  1. 1.Memorial University of NewfoundlandSt. John’sCanada
  2. 2.University of SzegedSzegedHungary

Personalised recommendations