Homogeneity vs. Adjacency: Generalising Some Graph Decomposition Algorithms

  • B. -M. Bui Xuan
  • M. Habib
  • V. Limouzy
  • F. de Montgolfier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)


In this paper, a new general decomposition theory inspired from modular graph decomposition is presented. Our main result shows that, within this general theory, most of the nice algorithmic tools developed for modular decomposition are still efficient.

This theory not only unifies the usual modular decomposition generalisations such as modular decomposition of directed graphs and of 2-structures, but also decomposition by star cutsets.


Directed Graph Boolean Function Strong Module Submodular Function Maximal Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. Journal of Automata, Languages and Combinatorics 8(2), 117–144 (2003)MATHMathSciNetGoogle Scholar
  2. 2.
    Bioch, J.: The complexity of modular decomposition of boolean functions. Discrete Applied Mathematics 149(1-3), 1–13 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bui Xuan, B.-M., Habib, M., Paul, C.: Revisiting T. Uno and M. Yagiura’s Algorithm. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 146–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Capelle, C., Habib, M., de Montgolfier, F.: Graph decomposition and factorizing permutations. D.M.T.C.S. 5(1), 55–70 (2002)MATHGoogle Scholar
  5. 5.
    Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Mathematics 37(1), 35–50 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Dahlhaus, E.: Parallel algorithms for hierarchical clustering, and applications to split decomposition and parity graph recognition. Journal of Algorithms 36(2), 205–240 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for sequential modular decomposition. Journal of Algorithms 41(2), 360–387 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures. Theoretical Computer Science 3(70), 277–342 (1990)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fujishige, S.: Submodular Functions and Optimization. North-Holland, Amsterdam (1991)MATHGoogle Scholar
  11. 11.
    Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: An interesting algorithmic tool kit. I.J.F.C.S. 10(2), 147–170 (1999)MathSciNetGoogle Scholar
  13. 13.
    McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs. Discrete Applied Mathematics 145(2), 189–209 (2005)CrossRefGoogle Scholar
  14. 14.
    McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Maths. 201, 189–241 (1999); Extended abstract at SODA 1994MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics 19, 257–356 (1984)Google Scholar
  16. 16.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • B. -M. Bui Xuan
    • 1
  • M. Habib
    • 2
  • V. Limouzy
    • 2
  • F. de Montgolfier
    • 2
  1. 1.LIRMM, Université Montpellier 2France
  2. 2.LIAFA, Université Paris 7France

Personalised recommendations