Skip to main content

A Fully Dynamic Algorithm for the Recognition of P 4-Sparse Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4271))

Included in the following conference series:

  • 742 Accesses

Abstract

We consider the dynamic recognition problem for the class of P 4-sparse graphs: the objective is to handle edge/vertex additions and deletions, to recognize if each such modification yields a P 4-sparse graph, and if yes, to update a representation of the graph. Our approach relies on maintaining the modular decomposition tree of the graph, which we use for solving the recognition problem. We establish conditions for each modification to yield a P 4-sparse graph and obtain a fully dynamic recognition algorithm which handles edge modifications in O(1) time and vertex modifications in O(d) time for a vertex of degree d. Thus, our algorithm implies an optimal edges-only dynamic algorithm and a new optimal incremental algorithm for P 4-sparse graphs. Moreover, by maintaining the children of each node of the modular decomposition tree in a binomial heap, we can handle vertex deletions in O(logn) time, at the expense of needing O(logn) time for each edge modification and O(d logn) time for the addition of a vertex adjacent to d vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes – a Survey. In: SIAM Monographs in Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

    Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Inc., Cambridge (2001)

    MATH  Google Scholar 

  3. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14, 926–984 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Crespelle, C., Paul, C.: Fully-dynamic recognition algorithm and certificate for directed cographs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 93–104. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Crespelle, C., Paul, C.: Fully-dynamic algorithm for modular decomposition and recognition of permutation graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 38–48. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Dalhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for sequential modular decomposition. J. Algorithms 41, 360–387 (2001)

    Article  MathSciNet  Google Scholar 

  8. Deng, X., Hell, P., Huang, J.: Linear time representation algorithms for proper circular arc graphs and proper interval graphs. SIAM J. Comput. 25, 390–403 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giakoumakis, V., Vanherpe, J.-M.: On extended P 4-reducible and P 4-sparse graphs. Theoret. Comput. Sci. 180, 269–286 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31, 289–305 (2002)

    Article  MathSciNet  Google Scholar 

  11. Hoàng, C.: Perfect graphs, Ph.D. Thesis, McGill University, Montreal, Canada (1985)

    Google Scholar 

  12. Hsu, W.-L.: On-line recognition of interval graphs in O(m + nlogn) time. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 27–38. Springer, Heidelberg (1996)

    Google Scholar 

  13. Ibarra, L.: Fully dynamic algorithms for chordal graphs. In: Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA 1999), pp. 923–924 (1999)

    Google Scholar 

  14. Ibarra, L.: A fully dynamic algorithm for recognizing interval graphs using the clique-separator graph, Technical Report, DCS-263-IR, University of Victoria (2001)

    Google Scholar 

  15. Jamison, B., Olariu, S.: Recognizing P 4-sparse graphs in linear time. SIAM J. Comput. 21, 381–406 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jamison, B., Olariu, S.: A tree representation for P 4-sparse graphs. Discrete Appl. Math. 35, 115–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Muller, J.H., Spinrad, J.: Incremental modular decomposition. J. ACM 36, 1–19 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136, 329–340 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Spinrad, J.: P 4-trees and substitution decomposition. Discrete Appl. Math. 39, 263–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikolopoulos, S.D., Palios, L., Papadopoulos, C. (2006). A Fully Dynamic Algorithm for the Recognition of P 4-Sparse Graphs. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_23

Download citation

  • DOI: https://doi.org/10.1007/11917496_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48381-6

  • Online ISBN: 978-3-540-48382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics