Abstract
We consider the dynamic recognition problem for the class of P 4-sparse graphs: the objective is to handle edge/vertex additions and deletions, to recognize if each such modification yields a P 4-sparse graph, and if yes, to update a representation of the graph. Our approach relies on maintaining the modular decomposition tree of the graph, which we use for solving the recognition problem. We establish conditions for each modification to yield a P 4-sparse graph and obtain a fully dynamic recognition algorithm which handles edge modifications in O(1) time and vertex modifications in O(d) time for a vertex of degree d. Thus, our algorithm implies an optimal edges-only dynamic algorithm and a new optimal incremental algorithm for P 4-sparse graphs. Moreover, by maintaining the children of each node of the modular decomposition tree in a binomial heap, we can handle vertex deletions in O(logn) time, at the expense of needing O(logn) time for each edge modification and O(d logn) time for the addition of a vertex adjacent to d vertices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes – a Survey. In: SIAM Monographs in Discrete Mathematics and Applications. SIAM, Philadelphia (1999)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Inc., Cambridge (2001)
Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14, 926–984 (1985)
Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)
Crespelle, C., Paul, C.: Fully-dynamic recognition algorithm and certificate for directed cographs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 93–104. Springer, Heidelberg (2004)
Crespelle, C., Paul, C.: Fully-dynamic algorithm for modular decomposition and recognition of permutation graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 38–48. Springer, Heidelberg (2005)
Dalhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for sequential modular decomposition. J. Algorithms 41, 360–387 (2001)
Deng, X., Hell, P., Huang, J.: Linear time representation algorithms for proper circular arc graphs and proper interval graphs. SIAM J. Comput. 25, 390–403 (1996)
Giakoumakis, V., Vanherpe, J.-M.: On extended P 4-reducible and P 4-sparse graphs. Theoret. Comput. Sci. 180, 269–286 (1997)
Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31, 289–305 (2002)
Hoàng, C.: Perfect graphs, Ph.D. Thesis, McGill University, Montreal, Canada (1985)
Hsu, W.-L.: On-line recognition of interval graphs in O(m + nlogn) time. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 27–38. Springer, Heidelberg (1996)
Ibarra, L.: Fully dynamic algorithms for chordal graphs. In: Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA 1999), pp. 923–924 (1999)
Ibarra, L.: A fully dynamic algorithm for recognizing interval graphs using the clique-separator graph, Technical Report, DCS-263-IR, University of Victoria (2001)
Jamison, B., Olariu, S.: Recognizing P 4-sparse graphs in linear time. SIAM J. Comput. 21, 381–406 (1992)
Jamison, B., Olariu, S.: A tree representation for P 4-sparse graphs. Discrete Appl. Math. 35, 115–129 (1992)
McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)
Muller, J.H., Spinrad, J.: Incremental modular decomposition. J. ACM 36, 1–19 (1989)
Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136, 329–340 (2004)
Spinrad, J.: P 4-trees and substitution decomposition. Discrete Appl. Math. 39, 263–291 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nikolopoulos, S.D., Palios, L., Papadopoulos, C. (2006). A Fully Dynamic Algorithm for the Recognition of P 4-Sparse Graphs. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_23
Download citation
DOI: https://doi.org/10.1007/11917496_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48381-6
Online ISBN: 978-3-540-48382-3
eBook Packages: Computer ScienceComputer Science (R0)