Computing Graph Polynomials on Graphs of Bounded Clique-Width

  • J. A. Makowsky
  • Udi Rotics
  • Ilya Averbouch
  • Benny Godlin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)


We discuss the complexity of computing various graph polynomials of graphs of fixed clique-width. We show that the chromatic polynomial, the matching polynomial and the two-variable interlace polynomial of a graph G of clique-width at most k with n vertices can be computed in time O(n f( k)), where f(k) ≤3 for the inerlace polynomial, f(k) ≤2k+1 for the matching polynomial and f(k) ≤3 Open image in new window 2 k + 2 for the chromatic polynomial.


Polynomial Time Characteristic Polynomial Chromatic Number Label Graph Graph Class 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABS00]
    Arratia, R., Bollobas, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Mathematics, pp. 237–245 (2000)Google Scholar
  2. [ABS04a]
    Arratia, R., Bollobas, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. Journal of Combinatorial Theory, Series B 92, 199–233 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. [ABS04b]
    Arratia, R., Bollobas, B., Sorkin, G.B.: A two-variable interlace polynomial. Combinatorica 24(4), 567–584 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. [ACP87]
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embedding in a k–tree. SIAM. J. Algebraic Discrete Methods 8, 277–284 (1987)MATHCrossRefMathSciNetGoogle Scholar
  5. [And98]
    Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discrete Mathematics 190, 39–54 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. [AvdH04]
    Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and Applications 377, 11–30 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. [BCSS98]
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)Google Scholar
  8. [BGMP86]
    Babić, D., Graovac, A., Mohar, B., Pisanski, T.: The matching polynomial of a polygraph. Discrete Applied Mathematics 15, 11–24 (1986)MATHCrossRefMathSciNetGoogle Scholar
  9. [Big93]
    Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)Google Scholar
  10. [Bir12]
    Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map. Annals of Mathematics 14, 42–46 (1912)CrossRefMathSciNetGoogle Scholar
  11. [Bol99]
    Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1999)Google Scholar
  12. [CDS95]
    Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs, Johann Ambrosius Barth, 3rd edn. (1995)Google Scholar
  13. [CER93]
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. System Sci. 46, 218–270 (1993)MATHCrossRefMathSciNetGoogle Scholar
  14. [CMR01]
    Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. [CO00]
    Courcelle, B., Olariu, S.: Upper bounds to the clique–width of graphs. Discrete Applied Mathematics 101, 77–114 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. [CO06]
    Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture by Seese. Journal of Combinatorial Theory, Series B, xx:xx–xx (2006)Google Scholar
  17. [CR05]
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. [DF99]
    Downey, R.G., Fellows, M.F.: Parametrized Complexity. Springer, Heidelberg (1999)Google Scholar
  19. [Die96]
    Diestel, R.: Graph Theory. In: Graduate Texts in Mathematics. Springer, Heidelberg (1996)Google Scholar
  20. [DKT05]
    Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic polynomials and chromaticity of graphs. World Scientific, Singapore (2005)MATHCrossRefGoogle Scholar
  21. [FK03]
    Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings with applications. Electronic Colloquium on Computational Complexity 1, R33 (2003)Google Scholar
  22. [FMR06]
    Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree width and clique-width. Discrete Applied Mathematics, xx:xx–xx (2006)Google Scholar
  23. [FRRS05]
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Proving NP-hardness for clique width. In: ECCC, xx:xx–yy (2005)Google Scholar
  24. [GHN05]
    Giménez, O., Hliněný, P., Noy, M.: Computing the Tutte polynomial on graphs of bounded clique-width. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 59–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. [GHN06]
    Giménez, O., Hlinĕný, P., Noy, M.: Computing the Tutte polynomial on graphs of bounded clique-width. XXX, xx:xx–yy (2006)Google Scholar
  26. [GR01]
    Godsil, C., Royle, G.: Algebraic Graph Theory. In: Graduate Texts in Mathematics. Springer, Heidelberg (2001)Google Scholar
  27. [JVW90]
    Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc. 108, 35–53 (1990)MATHCrossRefMathSciNetGoogle Scholar
  28. [KR03]
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126, 197–221 (2003)MATHCrossRefMathSciNetGoogle Scholar
  29. [LP86]
    Lovasz, L., Plummer, M.: Matching Theory. North-Holland, Amsterdam (1986)MATHGoogle Scholar
  30. [Mak04]
    Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126, 1–3 (2004)CrossRefMathSciNetGoogle Scholar
  31. [Nob98]
    Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width. Combinatorics, Probability and Computing 7, 307–321 (1998)MATHCrossRefMathSciNetGoogle Scholar
  32. [OS05]
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. Journal of Combinatorial Theory, Ser. B, xx(x):xx–yy (2005)Google Scholar
  33. [OW92]
    Oxley, J.G., Welsh, D.J.A.: Tutte polynomials computable in polynomial time. Discrete Mathematics 109, 185–192 (1992)MATHCrossRefMathSciNetGoogle Scholar
  34. [Pap94]
    Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading (1994)MATHGoogle Scholar
  35. [Sta73]
    Stanley, R.P.: Acyclic orientations of graphs. Discrete Mathematics 5, 171–178 (1973)MATHCrossRefMathSciNetGoogle Scholar
  36. [Tri92]
    Trinajstić, N.: Chemical graph theory, 2nd edn. CRC Press, Boca Raton (1992)Google Scholar
  37. [Val79]
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)MATHCrossRefMathSciNetGoogle Scholar
  38. [VW92]
    Vertigan, D.L., Welsh, D.J.A.: The computational complexity of the Tutte plane: The bipartite case. Combinatorics, Probability, and Computing 1, 181–187 (1992)MATHCrossRefMathSciNetGoogle Scholar
  39. [Wel93]
    Welsh, D.J.A.: Complexity: Knots, Colourings and Counting. London Mathematical Society Lecture Notes Series, vol. 186. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. A. Makowsky
    • 1
  • Udi Rotics
    • 2
  • Ilya Averbouch
    • 1
  • Benny Godlin
    • 1
    • 3
  1. 1.Department of Computer ScienceTechnion–Israel Institute of TechnologyHaifaIsrael
  2. 2.School of Computer Science and MathematicsNetanya Academic CollegeNetanyaIsrael
  3. 3.IBM Research and Development LaboratoryHaifaIsrael

Personalised recommendations