Treewidth: Characterizations, Applications, and Computations

  • Hans L. Bodlaender
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)


This paper gives a short survey on algorithmic aspects of the treewidth of graphs. Some alternative characterizations and some applications of the notion are given. The paper also discusses algorithms to compute the treewidth of given graphs, and how these are based on the different characterizations, with an emphasis on algorithms that have been experimentally tested.


Input Graph Tree Decomposition Chordal Graph Linear Time Algorithm Algorithmic Aspect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition based algorithm for vertex cover on planar graphs. Disc. Appl. Math. 145, 210–219 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 7–15 (2001)Google Scholar
  3. 3.
    Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability – A survey. BIT 25, 2–23 (1985)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM J. Alg. Disc. Meth. 7, 305–314 (1986)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Disc. Appl. Math. 23, 11–24 (1989)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bachoore, E.H., Bodlaender, H.L.: New upper bound heuristics for treewidth. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 216–227. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower bounds on treewidth. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 255–266. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal clique trees. Artificial Intelligence 125, 3–17 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Berry, A., Blair, J.R.S., Heggernes, P.: Maximum cardinality search for computing minimal triangulations. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 1–12. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Blair, J.R.S., Heggernes, P., Telle, J.: A practical algorithm for making filled graphs minimal. Theor. Comp. Sc. 250, 125–141 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)MATHMathSciNetGoogle Scholar
  14. 14.
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc. 209, 1–45 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 672–683. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with brambles. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 391–402. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Bodlaender, H.L., Koster, A.M.C.A.: On the Maximum Cardinality Search lower bound for treewidth. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 81–92. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Disc. Math. 306, 337–350 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Bodlaender, H.L., Koster, A.M.C.A., Eijkhof, F.v.d.: Pre-processing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 628–639. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. Journal of Graph Algorithms and Applications 10, 5–49 (2006)MATHMathSciNetGoogle Scholar
  24. 24.
    Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM J. Disc. Math. 6, 181–188 (1993)MATHCrossRefGoogle Scholar
  25. 25.
    Bollobás, B.: Modern Graph Theory. In: Graduate Texts in Mathematics. Springer, New York (1998)Google Scholar
  26. 26.
    Borie, R.B.: Recursively Constructed Graph Families. PhD thesis, School of Information and Computer Science, Georgia Institute of Technology (1988)Google Scholar
  27. 27.
    Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comp. Sc. 276, 17–32 (2002)MATHCrossRefGoogle Scholar
  30. 30.
    Clautiaux, F., Carlier, J., Moukrim, A., Négre, S.: New lower and upper bounds for graph treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Operations Research 38, 13–26 (2004)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. INFORMS J. on Computing 15(3), 233–248 (2003)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Dohmen, K., Pönitz, A., Tittmann, P.: A new two-variable generalization of the chromatic polynomial. Disc. Math. and Theor. Comp. Sc. 6, 69–90 (2004)Google Scholar
  35. 35.
    Eijkhof, F.v.d., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. Algorithmica (to appear)Google Scholar
  36. 36.
    Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  37. 37.
    Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Series B 16, 47–56 (1974)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence UAI 2004, Arlington, Virginia, USA, pp. 201–208. AUAI Press (2004)Google Scholar
  39. 39.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)MATHGoogle Scholar
  40. 40.
    Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 50–59. Springer, Heidelberg (1993)Google Scholar
  41. 41.
    Kirchhoff, G.: Über die Auflösung der Gleichugen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 71, 497–508 (1847)CrossRefGoogle Scholar
  42. 42.
    Koster, A.M.C.A.: Frequency Assignment - Models and Algorithms. PhD thesis, Univ. Maastricht, Maastricht, The Netherlands (1999)Google Scholar
  43. 43.
    Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experiments. In: Broersma, H., Faigle, U., Hurink, J., Pickl, S. (eds.) Electronic Notes in Discrete Mathematics, vol. 8, pp. 54–57. Elsevier Science Publishers, Amsterdam (2001)Google Scholar
  44. 44.
    Koster, A.M.C.A., Marchal, B., van Hoesel, C.P.M.: Local search algorithms for treewidth. Work in progress (2006)Google Scholar
  45. 45.
    Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving partial constraint satisfaction problems with tree decomposition. Networks 40(3), 170–180 (2002)MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Koster, A.M.C.A., Wolle, T., Bodlaender, H.L.: Degree-based treewidth lower bounds. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 101–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  47. 47.
    Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. The Journal of the Royal Statistical Society. Series B (Methodological) 50, 157–224 (1988)MATHMathSciNetGoogle Scholar
  48. 48.
    Lautemann, C.: Decomposition trees: structured graph representation and efficient algorithms. In: Dauchet, M., Nivat, M. (eds.) CAAP 1988. LNCS, vol. 299, pp. 28–39. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  49. 49.
    Lengauer, T., Wanke, E.: Efficient analysis of graph properties on context-free graph languages. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 379–393. Springer, Heidelberg (1988)Google Scholar
  50. 50.
    Lucena, B.: A new lower bound for tree-width using maximum cardinality search. SIAM J. Disc. Math. 16, 345–353 (2003)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Matoušek, J., Thomas, R.: Algorithms for finding tree-decompositions of graphs. J. Algorithms 12, 1–22 (1991)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Ramachandramurthi, S.: A lower bound for treewidth and its consequences. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 14–25. Springer, Heidelberg (1995)Google Scholar
  53. 53.
    Ramachandramurthi, S.: The structure and number of obstructions to treewidth. SIAM J. Disc. Math. 10, 146–157 (1997)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Reed, B.A.: Tree width and tangles, a new measure of connectivity and some applications. LMS Lecture Note Series, vol. 241, pp. 87–162. Cambridge University Press, Cambridge (1997)Google Scholar
  55. 55.
    Reed, B.A.: Algorithmic aspects of tree width. In: CMS Books Math. / Ouvrages Math. SMC, vol. 11, pp. 85–107. Springer, New York (2003)Google Scholar
  56. 56.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Röhrig, H.: Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken, Germany (1998)Google Scholar
  58. 58.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Seymour, P.D., Thomas, R.: Graph searching and a minimax theorem for tree-width. J. Comb. Theory Series B 58, 239–257 (1993)CrossRefMathSciNetGoogle Scholar
  60. 60.
    Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proc. National Conference on Artificial Intelligence (AAAI 1997), pp. 185–190. Morgan Kaufmann, San Francisco (1997)Google Scholar
  61. 61.
    Sysło, M.M.: NP-complete problems on some tree-structured graphs: A review. In: Nagl, M., Perl, J. (eds.) Proc. WG 1983 International Workshop on Graph Theoretic Concepts in Computer Science, Linz, West Germany, pp. 342–353. University Verlag Rudolf Trauner (1983)Google Scholar
  62. 62.
    Tarjan, R.E., Yannakakis, M.: Simple linear time algorithms to test chordiality of graphs, test acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Disc. Math. 10, 529–550 (1997)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Wimer, T.V.: Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept. of Computer Science, Clemson University (1987)Google Scholar
  65. 65.
    Wimer, T.V., Hedetniemi, S.T., Laskar, R.: A methodology for constructing linear graph algorithms. Congressus Numerantium 50, 43–60 (1985)MathSciNetGoogle Scholar
  66. 66.
    Zhou, X., Fuse, K., Nishizeki, T.: A linear algorithm for finding [g,f]-colorings of partial k-trees. Algorithmica 27, 227–243 (2000)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  1. 1.Institute of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations