Advertisement

Lemma Learning in the Model Evolution Calculus

  • Peter Baumgartner
  • Alexander Fuchs
  • Cesare Tinelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4246)

Abstract

The Model Evolution \(\mathcal{ME}\) Calculus is a proper lifting to first-order logic of the DPLL procedure, a backtracking search procedure for propositional satisfiability. Like DPLL, the ME calculus is based on the idea of incrementally building a model of the input formula by alternating constraint propagation steps with non-deterministic decision steps. One of the major conceptual improvements over basic DPLL is lemma learning, a mechanism for generating new formulae that prevent later in the search combinations of decision steps guaranteed to lead to failure. We introduce two lemma generation methods for \(\mathcal{ME}\) proof procedures, with various degrees of power, effectiveness in reducing search, and computational overhead. Even if formally correct, each of these methods presents complications that do not exist at the propositional level but need to be addressed for learning to be effective in practice for \(\mathcal{ME}\). We discuss some of these issues and present initial experimental results on the performance of an implementation of the two learning procedures within our \(\mathcal{ME}\) prover Darwin.

Keywords

Transition System Derivation Tree Ground Instance Derivation Rule Unit Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astrachan, O.L., Stickel, M.E.: Caching and Lemmaizing in Model Elimination Theorem Provers. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607. Springer, Heidelberg (1992)Google Scholar
  2. 2.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the Model Evolution Calculus. International Journal of Artificial Intelligence Tools 15(1), 21–52 (2006)CrossRefGoogle Scholar
  3. 3.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma Learning in the Model Evolution Calculus. Technical Report no. 06-04, Department of Computer Science, The University of Iowa (2006), Available at: http://www.cs.uiowa.edu/~tinelli/papers.html
  4. 4.
    Baumgartner, P., Fuchs, A., Tinelli, C., de Nivelle, H., Tinelli, C.: Computing Finite Models by Reduction to Function-Free Clause Logic. In: Ahrendt, W., Baumgartner, P., de Nivelle, H. (eds.) IJCAR 2006 Workshop on Disproving (2006)Google Scholar
  5. 5.
    Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. Fachberichte Informatik 1–2003, Universität Koblenz-Landau, Germany (2003)Google Scholar
  7. 7.
    Claessen, K., Sörensson, N.: New Techniques that Improve MACE-Style Finite Model Building. In: Baumgartner, P., Fermüller, C.G. (eds.) CADE-19 Workshop on Model Computation (2003)Google Scholar
  8. 8.
    de Nivelle, H., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite Model Search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 303–317. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    DeJong, G., Mooney, R.J.: Explanation-Based Learning: An Alternative View. Machine Learning 1(2), 145–176 (1986)Google Scholar
  10. 10.
    Fuchs, A.: Darwin: A Theorem Prover for the Model Evolution Calculus. Master’s thesis, University of Koblenz-Landau (2004)Google Scholar
  11. 11.
    Letz, R., Stenz, G.: Model Elimination and Connection Tableau Procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Elsevier, Amsterdam (2001)Google Scholar
  12. 12.
    Loveland, D.: Automated Theorem Proving - A Logical Basis. North Holland, Amsterdam (1978)MATHGoogle Scholar
  13. 13.
    McCune, W.: Mace4 Reference Manual and Guide. Technical Report ANL/MCS-TM-264, Argonne National Laboratory (2003)Google Scholar
  14. 14.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and Abstract DPLL Modulo Theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 36–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Segre, A., Elkan, C.: A High-Performance Explanation-Based Learning Algorithm. Artificial Intelligence 69, 1–50 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Baumgartner
    • 1
  • Alexander Fuchs
    • 2
  • Cesare Tinelli
    • 2
  1. 1.National ICT Australia (NICTA) 
  2. 2.The University of IowaUSA

Personalised recommendations