In this paper we present a method of integrating theory reasoning into the instantiation framework. This integration is done in the black-box style, which allows us to integrate different theories in a uniform way. We prove completeness of the resulting calculus, provided that the theory reasoner is answer-complete and complete for reasoning with ground clauses. One of the distinctive features of our approach is that it allows us to employ off-the-shelf satisfiability solvers for ground clauses modulo theories, as a part of general first-order reasoning. As an application of this approach, we show how it is possible to combine the instantiation calculus with other calculi, such as ordered resolution and paramodulation.


Saturation Process Theory Reasoner Ground Term Ground Instance Unit Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armando, A., Ranise, S., Rusinowitch, M.: A Rewriting Approach to Satisfiability Procedures. Info. and Comp. 183(2), 140–164 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 445–532. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 19–100. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  4. 4.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierarchic First-Order Theories. Applicable Algebra in Engineering, Communication and Computing 5(3/4), 193–212 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barrett, C., de Moura, L., Stump, A.: Design and results for the 1st satisfiability modulo theories competition. Journal of Automated Reasoning (to appear, 2006)Google Scholar
  6. 6.
    Baumgartner, P.: FDPLL – a first-order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 200–219. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 350–364. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 392–408. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Baumgartner, P.: An order theory resolution calculus. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 119–130. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  10. 10.
    Gallier, J., Snyder, W.: Complete sets of transformations for general E-unification. Theoretical Computer Science 67(2,3), 203–260 (1989)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Ganzinger, H., Hillenbrand, T., Waldmann, U.: Superposition modulo a shostak theory. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 182–196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc. 18th IEEE Symposium on LICS, pp. 55–64. IEEE, Los Alamitos (2003)Google Scholar
  14. 14.
    Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Ganzinger, H., Korovin, K.: Theory Instantiation (2006), Full version, Available at:
  16. 16.
    Hooker, J., Rago, G., Chandru, V., Shrivastava, A.: Partial instantiation methods for inference in first order logic. J. of Automated Reasoning 28, 371–396 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete domain in the framework of resolution. In: ECAI, pp. 353–357 (2004)Google Scholar
  18. 18.
    Letz, R., Stenz, G.: Proof and model generation with disconnection tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS, vol. 2250, pp. 142–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Letz, R., Stenz, G.: Integration of equality reasoning into the disconnection calculus. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 176–190. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Lynch, C., Morawska, B.: Goal-directed E-unification. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 231–245. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Nieuwenhuis, R.: On narrowing, refutation proofs and constraints. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 56–70. Springer, Heidelberg (1995)Google Scholar
  22. 22.
    Nieuwenhuis, R., Oliveras, A.: Decision Procedures for SAT, SAT Modulo Theories and Beyond. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 23–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  24. 24.
    Plaisted, D., Zhu, Y.: Ordered semantic hyper-linking. J. of Automated Reasoning 25(3), 167–217 (2000)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Stickel, M.: Automated deduction by theory resolution. J. Autom. Reasoning 1(4), 333–355 (1985)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 308–319. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Harald Ganzinger
    • 1
  • Konstantin Korovin
    • 2
  1. 1.MPI für Informatik 
  2. 2.University of Manchester 

Personalised recommendations