Representing Defaults and Negative Information Without Negation-as-Failure

  • Pablo R. Fillottrani
  • Guillermo R. Simari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4246)


In logic programs, negation-as-failure has been used both for representing negative information and for providing default nonmonotonic inference. In this paper we argue that this twofold role is not only unnecessary for the expressiveness of the language, but it also plays against declarative programming, especially if further negation symbols such as strong negation are also available. We therefore propose a new logic programming approach in which negation and default inference are independent, orthogonal concepts. Semantical characterization of this approach is given in the style of answer sets, but other approaches are also possible. Finally, we compare them with the semantics for logic programs with two kinds of negation.


Logic Program Logic Programming Negative Information Strong Negation Default Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D.H.D., Szeredi, P. (eds.) Proceedings of the 7th. International Logic Programming Conference, Jerusalem, Israel, pp. 579–597. MIT Press, Cambridge (1990)Google Scholar
  2. 2.
    Pearce, D.: Reasoning with negative information II: hard negation, strong negation and logic programs. In: Pearce, D.J., Wansing, H. (eds.) All-Berlin 1990. LNCS, vol. 619, pp. 63–79. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  3. 3.
    Kowalski, R.A., Sadri, F.: Logic programs with exceptions. In: Warren, D.H.D., Szeredi, P. (eds.) Proceedings of the 7th. International Logic Programming Conference, Jerusalem, Israel, pp. 398–613. MIT Press, Cambridge (1990)Google Scholar
  4. 4.
    Wagner, G.: Vivid Logic: knowledge based reasoning with two kinds of negation. LNCS, vol. 764. Springer, Heidelberg (1994)MATHGoogle Scholar
  5. 5.
    Dijkstra, E.W.: GOTO statement considered harmful. Communications of the ACM 11, 147–148 (1968)CrossRefGoogle Scholar
  6. 6.
    Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic Programming 19, 73–148 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kowalski, R.A.: Predicate logic as a programming language. In: Rosenfeld, J.L. (ed.) Proceedings of the IFIP Congress 74, Stockholm, Sweden, pp. 569–574. North Holland, Amsterdam (1974)Google Scholar
  8. 8.
    Lloyd, J.W.: Practical advantages of declarative programming. In: Proceedings of the 1994 Joint Conference on Declarative Programming, GULP-PRODE 1994. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Denecker, M.: What’s in a model? epistemological analysis of logic programming. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.) KR, pp. 106–113. AAAI Press, Menlo Park (2004)Google Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programming and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  11. 11.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25, 369–389 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Moore, R.C.: Semantical considerations on nonmonotonic logic. Artificial Intelligence 25, 75–94 (1985)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lifschitz, V.: Foundations of logic programs. In: Brewka, G. (ed.) Principles of knowledge representation. Studies in Logic, Language and Information, pp. 69–127. Cambridge University Press, Cambridge (1996)Google Scholar
  14. 14.
    Alferes, J.J., Pereira, L.M.: Reasoning with Logic Programming. LNCS, vol. 1111. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of logic in artificial intelligence and logic programming, vol. 3, pp. 297–352. Oxford University Press, Oxford (1994)Google Scholar
  16. 16.
    Lifschitz, V.: Pointwise circumscription. In: Ginsberg, M.L. (ed.) Readings in nonmonotonic reasoning, pp. 179–193. Morgan Kaufmann Publishers, San Francisco (1987)Google Scholar
  17. 17.
    Lifschitz, V.: Circumscriptive theories: a logic-based framework for knowledge representation. In: Thomason, R.H. (ed.) Philosophical logic and artificial intelligence, pp. 109–159. Kluwer Academic Publishers, Dordrecht (1989)Google Scholar
  18. 18.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the 5th. International Logic Programming Conference, Seattle, Washington. MIT Press, Cambridge (1988)Google Scholar
  19. 19.
    Fillottrani, P.R.: Sobre la negación y la inferencia no monótona en la programación en lógica. In: Proceedings CACIC 2000, Sexto Congreso Argentino de Ciencias de la Computación, pp. 489–500 (2000)Google Scholar
  20. 20.
    Dix, J.: Semantics of logic programs: their intuitions and formal properties. In: Fuhrmann, A., Rott, H. (eds.) Logic, action and information, pp. 227–313. de Gruyter, Berlín–New York (1994)Google Scholar
  21. 21.
    Brewka, G., Dix, J., Konolige, K.: Nonmonotonic reasoning: an overview. Lecture Notes, vol. 73. CSLI Publications (1997)Google Scholar
  22. 22.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Dung, P.M., Ruamviboonsuk, P.: Well-founded reasoning with classical negation. In: Nerode, A., Marek, V.W., Subrahmanian, V.S. (eds.) Proceedings of the 1st. International Workshop on Logic Programming and Nonmonotonic Reasoning, Washington, DC, pp. 120–132. MIT Press, Cambridge (1991)Google Scholar
  24. 24.
    Przymusinski, T.C.: Extended stable semantics for normal and disjunctive logic programs. In: Warren, D.H.D., Szeredi, P. (eds.) Proc. of the 7th. International Logic Programming Conference, Jerusalem, Israel, pp. 459–477. MIT Press, Cambridge (1990)Google Scholar
  25. 25.
    Alferes, J.J., Pereira, L.M.: On logic program semantics with two kinds of negation. In: Apt, K.R. (ed.) Proceedings of the 1992 Joint International Conference and Symposium on Logic Programming, Washington, DC, pp. 574–588. MIT Press, Cambridge (1992)Google Scholar
  26. 26.
    Wagner, G.: Vivid reasoning with negative information. In: van der Hoek, W., Meyer, J.J.C., Tan, Y.H., Witteveen, C. (eds.) Nonmonotonic reasoning and partial semantics, pp. 181–205. Ellis Horwood (1992)Google Scholar
  27. 27.
    Poole, D., Goebel, R., Aleliunas, R.: Theorist: a logical reasoning system for defaults and diagnosis. In: Cercone, N., McCalla, G. (eds.) The knowledge frontier: essays in the representation of knowledge, pp. 331–352. Springer, Heidelberg (1987)Google Scholar
  28. 28.
    Loyer, Y., Straccia, U.: Any-world assumptions in logic programming. Theor. Comput. Sci. 342, 351–381 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pablo R. Fillottrani
    • 1
  • Guillermo R. Simari
    • 1
  1. 1.Department of Computer Science and EngineeringUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations