Combining Supervaluation and Degree Based Reasoning Under Vagueness

  • Christian G. Fermüller
  • Robert Kosik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4246)


Two popular approaches to formalize adequate reasoning with vague propositions are usually deemed incompatible: On the one hand, there is supervaluation with respect to precisification spaces, which consist in collections of classical interpretations that represent admissible ways of making vague atomic statements precise. On the other hand, t-norm based fuzzy logics model truth functional reasoning, where reals in the unit interval [0,1] are interpreted as degrees of truth. We show that both types of reasoning can be combined within a single logic S Ł, that extends both: Łukasiewicz logic Ł and (classical) S5, where the modality corresponds to ‘ true in all complete precisifications’. Our main result consists in a game theoretic interpretation of S Ł, building on ideas already introduced by Robin Giles in the 1970s to obtain a characterization of Ł in terms of a Lorenzen style dialogue game combined with bets on the results of binary experiments that may show dispersion. In our case the experiments are replaced by random evaluations with respect to a given probability distribution over permissible precisifications.


Fuzzy Logic Truth Function Propositional Variable Atomic Proposition Kripke Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beall, J.C. (ed.) Liars and Heaps. Oxford University Press, Oxford (2003)Google Scholar
  2. 2.
    Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In: Gödel 96. Kurt Gödel’s Legacy. LNL, vol. 6, pp. 23–33. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Burns, L.C.: Vagueness: An Investigation Into Natural Language and the Sorites Paradox. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  4. 4.
    Ciabattoni, A., Fermüller, C., Metcalfe, G.: Uniform Rules and Dialogue Games for Fuzzy Logics. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 496–510. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Ciabattoni, A., Montagna, F., Metcalfe, G.: Adding Modalities to MTL and its Extensions. In: Linz Symposium 2005 (to appear, 2005)Google Scholar
  6. 6.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. In: Trends in Logic, vol. 7. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  7. 7.
    Edgington, D.: Validity, Uncertainty and Vagueness. Analsis 52/4, 193–204 (1992)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Flaminio, T., Montagna, F.: A logical and algebraic treatment of conditional probability. Arch. Math. Logic 44, 245–262 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fermüller, C.G.: Theories of Vagueness Versus Fuzzy Logic: Can Logicians Learn from Philosophers? Neural Network World Journal 13(5), 455–466 (2003)Google Scholar
  10. 10.
    Fermüller, C.G.: Revisiting Giles’s Game. In: Logic, Games and Philosophy: Foundational Perspectives, Prague Colloquium (October 2004) (2004)Google Scholar
  11. 11.
    Kit Fine: Vagueness, Truth and Logic. Synthése 30, 265–300 (1975)Google Scholar
  12. 12.
    Gaines, B.R.: Foundations of fuzzy reasoning. International Journal of Man-Machine Studies 8, 623–668 (1976)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Giles, R.: A non-classical logic for physics. Studia Logica 33(4), 399–417 (1974)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Giles, R.: A non-classical logic for physics. In: R.Wojcicki, G.Malinkowski (Eds.) Selected Papers on Łukasiewicz Sentential Calculi. Polish Academy of Sciences, pp. 13–51 (1977)Google Scholar
  15. 15.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  16. 16.
    Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Computing 2, 124–128 (1998)Google Scholar
  17. 17.
    Hájek, P.: Why fuzzy logic? In: Jackquette, D. (ed.) A Companion to Philosophical Logic, pp. 595–606. Blackwell, Malden (2002)Google Scholar
  18. 18.
    Hájek, P., Novák, V.: The sorites paradox and fuzzy logic. Intl. J. of General Systems 32/4, 373–383 (2003)CrossRefGoogle Scholar
  19. 19.
    Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probability. In: 11th Conference on Uncertainty in Artificial Intelligence (UAI-1995), pp. 237–244. Morgan Kaufmann, San Francisco (1995)Google Scholar
  20. 20.
    Keefe, R.: Theories of Vagueness. Cambridge University Press, Cambridge (2000)Google Scholar
  21. 21.
    Keefe, R., Smith, P. (eds.): Vagueness: A Reader. MIT Press, Massachusetts (1987)Google Scholar
  22. 22.
    Kremer, P., Kremer, M.: Some Supervaluation-based Consequence Relations. Journal of Philosophical Logic 32(3), 5–244 (2003)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lorenzen, P.: Logik und Agon. In: Atti Congr. Internaz. di Filosofia, Sansoni, pp. 187–194 (1960)Google Scholar
  24. 24.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Transactions on Computational Logic 6(3), 578–613 (2005)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Annals of Mathematics 65, 117–143 (1957)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Paris, J.: Semantics for Fuzzy Logic Supporting Truth Functionality. In: Discovering the World with Fuzzy Logic, pp. 82–104. Physica-Verlag, Heidelberg (2000)Google Scholar
  27. 27.
    Varzi, A.: Vagueness, Logic, and Ontology. The Dialogue 1, 135–154Google Scholar
  28. 28.
    Williamson, T.: Vagueness. Routledge, London (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian G. Fermüller
    • 1
  • Robert Kosik
    • 1
  1. 1.Technische Universität WienAustria

Personalised recommendations