Advertisement

Abstract

Deduction modulo is a theoretical framework designed to introduce computational steps in deductive systems. This approach is well suited to automated theorem proving and a tableau method for first-order classical deduction modulo has been developed. We reformulate this method and give an (almost constructive) semantic completeness proof. This new proof allows us to extend the completeness theorem to several classes of rewrite systems used for computations in deduction modulo. We are then able to build a counter-model when a proof fails for these systems.

Keywords

Sequent Calculus Boolean Model Ground Term Automate Theorem Prove Partial Valuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckert, B., Hähnle, R., Schmitt, P.: The even more liberalized δ-rule in free variable Semantic Tableaux. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Bonichon, R.: TaMeD: A tableau method for deduction modulo. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS, vol. 3097, pp. 445–459. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bonichon, R., Hermant, O.: On constructive cut admissibility in deduction modulo (submitted), http://www-spi.lip6.fr/~bonichon/papers/occad-fl.ps
  4. 4.
    Cantone, D., Nicolosi Asmundo, M.: A sound framework for delta-rule variants in free variable semantic tableaux. In: FTP (2005)Google Scholar
  5. 5.
    Degtyarev, A., Voronkov, A.: The undecidability of simultaneous rigid e-unification. Theoretical Computer Science 166(1-2), 291–300 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid e-unification. J. Autom. Reason. 20(1-2), 47–80 (1998)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Degtyarev, A., Voronkov, A.: Equality Reasoning in Sequent-based Calculi, ch. 10. Elsevier Science Publishers B.V, Amsterdam (2001)Google Scholar
  8. 8.
    Deplagne, E.: Sequent calculus viewed modulo. In: Pilière, C. (ed.) Proceedings of the ESSLLI-2000 Student Session, Birmingham, England, August 2000, pp. 66–76. University of Birmingham, Birmingham (2000)Google Scholar
  9. 9.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning (31), 33–72 (2003)Google Scholar
  10. 10.
    Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic Logic 68(4), 1289–1316 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesel, J. (ed.) Term rewriting and applications. LNCS. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Fitting, M.: First Order Logic and Automated Theorem Proving, 2nd edn. Springer, Heidelberg (1996)MATHGoogle Scholar
  13. 13.
    Giese, M.: Incremental Closure of Free Variable Tableaux. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 545–560. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Hähnle, R., Schmitt, P.: The liberalized δ-rule in free variable semantic tableaux. Journal of Automated Reasoning 13(2), 211–221 (1994)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hermant, O.: Méthodes Sémantiques en Déduction Modulo. PhD thesis, Université Paris 7 - Denis Diderot (2005)Google Scholar
  16. 16.
    Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In: Typed Lambda-Calculi and Applications, pp. 221–233 (2005)Google Scholar
  17. 17.
    Krivine, J.-L.: Une preuve formelle et intuitionniste du théorème de complétude de la logique classique. The Bulletin of Symbolic Logic 2, 405–421 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Smullyan, R.: First Order Logic. Springer, Heidelberg (1968)MATHGoogle Scholar
  19. 19.
    Stuber, J.: A Model-Based Completeness Proof of Extended Narrowing and Resolution. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, p. 195. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Richard Bonichon
    • 1
  • Olivier Hermant
    • 1
  1. 1.Université Paris 6 – LIP6ParisFrance

Personalised recommendations