Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4246))

Abstract

Deduction modulo is a theoretical framework designed to introduce computational steps in deductive systems. This approach is well suited to automated theorem proving and a tableau method for first-order classical deduction modulo has been developed. We reformulate this method and give an (almost constructive) semantic completeness proof. This new proof allows us to extend the completeness theorem to several classes of rewrite systems used for computations in deduction modulo. We are then able to build a counter-model when a proof fails for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckert, B., Hähnle, R., Schmitt, P.: The even more liberalized δ-rule in free variable Semantic Tableaux. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. Bonichon, R.: TaMeD: A tableau method for deduction modulo. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS, vol. 3097, pp. 445–459. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bonichon, R., Hermant, O.: On constructive cut admissibility in deduction modulo (submitted), http://www-spi.lip6.fr/~bonichon/papers/occad-fl.ps

  4. Cantone, D., Nicolosi Asmundo, M.: A sound framework for delta-rule variants in free variable semantic tableaux. In: FTP (2005)

    Google Scholar 

  5. Degtyarev, A., Voronkov, A.: The undecidability of simultaneous rigid e-unification. Theoretical Computer Science 166(1-2), 291–300 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid e-unification. J. Autom. Reason. 20(1-2), 47–80 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Degtyarev, A., Voronkov, A.: Equality Reasoning in Sequent-based Calculi, ch. 10. Elsevier Science Publishers B.V, Amsterdam (2001)

    Google Scholar 

  8. Deplagne, E.: Sequent calculus viewed modulo. In: Pilière, C. (ed.) Proceedings of the ESSLLI-2000 Student Session, Birmingham, England, August 2000, pp. 66–76. University of Birmingham, Birmingham (2000)

    Google Scholar 

  9. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning (31), 33–72 (2003)

    Google Scholar 

  10. Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic Logic 68(4), 1289–1316 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesel, J. (ed.) Term rewriting and applications. LNCS. Springer, Heidelberg (2005)

    Google Scholar 

  12. Fitting, M.: First Order Logic and Automated Theorem Proving, 2nd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  13. Giese, M.: Incremental Closure of Free Variable Tableaux. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 545–560. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Hähnle, R., Schmitt, P.: The liberalized δ-rule in free variable semantic tableaux. Journal of Automated Reasoning 13(2), 211–221 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hermant, O.: Méthodes Sémantiques en Déduction Modulo. PhD thesis, Université Paris 7 - Denis Diderot (2005)

    Google Scholar 

  16. Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In: Typed Lambda-Calculi and Applications, pp. 221–233 (2005)

    Google Scholar 

  17. Krivine, J.-L.: Une preuve formelle et intuitionniste du théorème de complétude de la logique classique. The Bulletin of Symbolic Logic 2, 405–421 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Smullyan, R.: First Order Logic. Springer, Heidelberg (1968)

    MATH  Google Scholar 

  19. Stuber, J.: A Model-Based Completeness Proof of Extended Narrowing and Resolution. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, p. 195. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonichon, R., Hermant, O. (2006). A Semantic Completeness Proof for TaMeD. In: Hermann, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2006. Lecture Notes in Computer Science(), vol 4246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11916277_12

Download citation

  • DOI: https://doi.org/10.1007/11916277_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48281-9

  • Online ISBN: 978-3-540-48282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics