An Executable Formalization of the HOL/Nuprl Connection in the Metalogical Framework Twelf

  • Carsten Schürmann
  • Mark-Oliver Stehr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4246)


Howe’s HOL/Nuprl connection is an interesting example of a translation between two fundamentally different logics, namely a typed higher-order logic and a polymorphic extensional type theory. In earlier work we have established a proof-theoretic correctness result of the translation in a way that complements Howe’s semantics-based justification and furthermore goes beyond the original HOL/Nuprl connection by providing the foundation for a proof translator. Using the Twelf logical framework, the present paper goes one step further. It presents the first rigorous formalization of this treatment in a logical framework, and hence provides a safe alternative to the translation of proofs.


Type Theory Deductive System Proof Obligation High Order Logic Signature Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, S.: A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis, Cornell University (September 1987)Google Scholar
  2. 2.
    Anderson, P., Pfenning, F.: Verifying uniqueness in a logical framework. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 18–33. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Barzilay, E., Allen, S.F., Constable, R.L.: Practical reflection in nuprl. In: Kolaitis, P. (ed.) Proceedings of 18th IEEE Symposium on Logic in Computer Science, Ottawa, Canada, June 22–25 (2003)Google Scholar
  4. 4.
    Constable, R.L., Allen, S., Bromely, H., Cleveland, W., et al.: Implementing Mathematics with the Nuprl Development System. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  5. 5.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A theorem proving environment for higher order logic. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  6. 6.
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)MATHMathSciNetGoogle Scholar
  7. 7.
    Howe, D.J.: Importing mathematics from HOL into Nuprl. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 267–282. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Howe, D.J.: Semantical foundations for embedding HOL in Nuprl. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 85–101. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Howe, D.J.: A classical set-theoretic model of polymorphic extensional type theory (manuscript, 1997)Google Scholar
  10. 10.
    Howe, D.J.: Toward sharing libraries of mathematics between theorem provers. In: Proceedings of Frontiers of Combining Systems, FroCoS 1998, ILLC, University of Amsterdam, October 2–4, 1998. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  11. 11.
    Howe, D.J.: Source Code of the HOL-Nuprl Translator (including Extensions to Nuprl) (January 1999)Google Scholar
  12. 12.
    Meseguer, J.: General logics. In: Ebbinghaus, H.-D., et al. (eds.) Proceedings of Logic Colloquium 1987, Granada, Spain, July 1987, pp. 275–329. North-Holland, Amsterdam (1989)Google Scholar
  13. 13.
    Naumov, P., Stehr, M.-O., Meseguer, J.: The HOL/NuPRL proof translator — A practical approach to formal interoperability. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 329–345. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Petersson, K., Smith, J., Nordstroem, B.: Programming in Martin-Löf’s Type Theory. An Introduction. International Series of Monographs on Computer Science. Clarendon Press, Oxford (1990)MATHGoogle Scholar
  15. 15.
    Pfenning, F.: Elf: A language for logic definition and verified meta-programming. In: Fourth Annual Symposium on Logic in Computer Science, Pacific Grove, California, June 1989, pp. 313–322. IEEE Computer Society Press, Los Alamitos (1989)CrossRefGoogle Scholar
  16. 16.
    Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS, vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Rohwedder, E., Pfenning, F.: Mode and termination checking for higher-order logic programs. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 296–310. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Schürmann, C., Pfenning, F.: A coverage checking algorithm for LF. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 120–135. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Schürmann, C., Stehr, M.-O.: An executable formalization of the HOL/Nuprl connection in the metalogical framework Twelf. Technical report, Yale University, Computer Science Department, YALEU/DCS/TR-1312 (2005)Google Scholar
  20. 20.
    Stehr, M.-O., Naumov, P., Meseguer, J.: A proof-theoretic approach to HOL-Nuprl connection with applications to proof translation (extended abstract). In: WADT/CoFI 2001, 15th International Workshop on Algebraic Development Techniques and General Workshop of the CoFI WG, Genova, Italy, April 1-3 (2001),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carsten Schürmann
    • 1
  • Mark-Oliver Stehr
    • 2
  1. 1.Department of Computer ScienceYale UniversityNew HavenUSA
  2. 2.Siebel Center for Computer ScienceUniversity of Illinois at Urbana ChampaignUrbanaUSA

Personalised recommendations