Modular Cut-Elimination: Finding Proofs or Counterexamples

  • Agata Ciabattoni
  • Kazushige Terui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4246)


Modular cut-elimination is a particular notion of ”cut-elimination in the presence of non-logical axioms” that is preserved under the addition of suitable rules. We introduce syntactic necessary and sufficient conditions for modular cut-elimination for standard calculi, a wide class of (possibly) multiple-conclusion sequent calculi with generalized quantifiers. We provide a ”universal” modular cut-elimination procedure that works uniformly for any standard calculus satisfying our conditions. The failure of these conditions generates counterexamples for modular cut-elimination and, in certain cases, for cut-elimination.


Atomic Formula Logical Rule Proof Theory Structural Rule Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buss, S.: An Introduction to Proof Theory. In: Handbook of Proof Theory, pp. 1–78. Elsevier Science (1998)Google Scholar
  2. 2.
    Ciabattoni, A.: Automated Generation of Analytic Calculi for Logics with Linearity. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 503–517. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut-elimination. Studia Logica 82(1), 95–119 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gentzen, G.: Untersuchungen über das logische Schliessen I, II. Mathematische Zeitschrift 39, 176–210, 405–431 (1934)Google Scholar
  5. 5.
    Lopez-Escobar, E.G.K.: On the Interpolation Theorem for the Logic of Constant Domains. J. Symb. Log. 46(1), 87–88 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Miller, D., Pimentel, E.: Using Linear Logic to Reason about Sequent Systems. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 2–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Pfenning, F.: Structural Cut Elimination: I. Intuitionistic and Classical Logic. Inf. Comput. 157, 84–141 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Restall, G.: An Introduction to Substructural Logics. Routledge, London (1999)MATHGoogle Scholar
  9. 9.
    Schütte, K.: Beweistheorie. Springer, Heidelberg (1960)MATHGoogle Scholar
  10. 10.
    Tait, W.W.: Normal derivability in classical logic. In: The Sintax and Semantics of infinitary Languages. LNM, vol. 72, pp. 204–236 (1968)Google Scholar
  11. 11.
    Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)MATHGoogle Scholar
  12. 12.
    Terui, K.: Which Structural Rules Admit Cut Elimination? — An Algebraic Criterion. Journal of Symbolic Logic (to appear)Google Scholar
  13. 13.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  14. 14.
    Zamanski, A., Avron, A.: Cut-Elimination and Quantification in Canonical Systems. Studia Logica 82(1), 157–176 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zamanski, A., Avron, A.: Canonical gentzen-type calculi with (n,k)-ary quantifiers. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 251–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Agata Ciabattoni
    • 1
  • Kazushige Terui
    • 2
  1. 1.Institute für Diskrete Mathematik und GeometrieTU Wien 
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations