Query Approximation by Semantic Similarity in GeoPQL

  • Fernando Ferri
  • Anna Formica
  • Patrizia Grifoni
  • Maurizio Rafanelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4278)


This paper proposes a method for query approximation in Geographical Information Systems. In our approach, queries are expressed by the Geographical Pictorial Query Language (GeoPQL), and query approximation is performed using WordNet, a lexical database for the English language available on the Internet. Due to the focus on geographical context, we address WordNetpartitiontaxonomies. If a concept contained in a query has no match in the database, the query is approximated using the immediate superconcepts and subconcepts in the WordNet taxonomy, and their related degrees of similarity. Semantic similarity is evaluated using the information content approach, which shows a higher correlation with human judgment than the traditional similarity measures.


Semantic Similarity Lexical Database Entity Class Geographical Database Geographical Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rodriguez, M.A., Egenhofer, M.J.: Comparing Geospatial Entity Classes: an Asymmetric and Content-Dependent Similarity Measure. International Journal of Geographical Information Science 18(3), 229–256 (2004)CrossRefGoogle Scholar
  2. 2.
    Rodriguez, M.A., Egenhofer, M.J.: Determining Semantic Similarity among Entity Classes from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering 15(2), 442–456 (2003)CrossRefGoogle Scholar
  3. 3.
    Ferri, F., Formica, A., Grifoni, P., Rafanelli, M.: Evaluating Semantic Similarity Using GML in Geographical Information Systems. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 1009–1019. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Ferri, F., Rafanelli, M.: GeoPQL: a Geographical Pictorial Query Language that resolves ambiguities in query interpretation. In: Spaccapietra, S., Zimányi, E. (eds.) Journal on Data Semantics III. LNCS, vol. 3534, pp. 50–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    WordNet 2.1: A lexical database for the English language (2005),
  6. 6.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceed. 15th Intern. Conference on Machine Learning, ICML 1998, Madison, WI, pp. 296–304 (1998)Google Scholar
  7. 7.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceed. IJCAI 1995 (1995)Google Scholar
  8. 8.
    Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 95–130 (1999)MATHGoogle Scholar
  9. 9.
    Storey, V.C.: Understanding Semantic Relationships. Very Large Data Bases Journal 2, 455–488 (1993)CrossRefGoogle Scholar
  10. 10.
    Barbara, D., Faloutsos, C., DuMouchel, W., Haas, P.J., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Johnson, T., Ng, R.T., Poosala, V., Ross, K.A., Sevcik, K.C.: The New Jersey Data Reduction Report. IEEE Data Engineering Bulletin 20(4), 3–45 (1997)Google Scholar
  11. 11.
    Han, J., Kamber, M.: Data Mining: concepts and techniques. Academic Press, London (2001)Google Scholar
  12. 12.
    D’Ulizia, F.F., Grifoni, P., Rafanelli, M.: Relaxing constraints on GeoPQL operators for improving query answering. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 728–737. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Lee, J.H., Kim, M.H., Lee, Y.J.: Information retrieval based on conceptual distance in is-a hierarchies. Journal of Documentation 49(2), 188–207 (1989)CrossRefGoogle Scholar
  14. 14.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transaction on Systems, Man, and Cybernetics 19(1), 17–30 (1989)CrossRefGoogle Scholar
  15. 15.
    Sussna, M.: Word sense disambiguation for free-text indexing using a massive semantic network. In: Proceed. Second Intern. Conference on Information and Knowledge Management (CIKM 1993), Arlington, Virginia (1993)Google Scholar
  16. 16.
    Richardson, R., Smeaton, A.F., Murphy, J.: Using WordNet as a knowledge base for measuring semantic similarity between words. Working paper CA-1294, Dublin City University, School of Computer Applications, Dublin, Ireland (1994)Google Scholar
  17. 17.
    Morocho, V., Perez-Vidal, L., Saltor, F.: Semantic integration on spatial databases SIT-SD prototype. In: Proceed. Of VIII Jornadas de Ingenieria del Software y Bases de Datos, Alicante, Spain, November 2003, pp. 603–612 (2003)Google Scholar
  18. 18.
    Maguitman, A.G., Menczer, F., Roinestad, H., Vespignani, A.: Algorithmic detection of semantic similarity. In: Intern. World Wide Web Conference Committee (IW3C2), WWW 2005, Chiba, Japan, May 10-14, pp. 107–116 (2005)Google Scholar
  19. 19.
    Ross, S.: A First Course in Probability. Macmillan, Basingstoke (1976)MATHGoogle Scholar
  20. 20.
    Menczer, F.: Combining link and content analysis to estimate semantic similarity. In: Intern. World Wide Web Conference, WWW 2004, New York, USA, May 17-22, pp. 452–453 (2004)Google Scholar
  21. 21.
    Frakes, W.B., Baeza-Yates, R. (eds.): Information Retrieval, Data Structure and Algorithms. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  22. 22.
    Chien, S., Immorlica, N.: Semantic Similarity between Search Engine Queries using Temporal Correlation. In: Intern. World Wide Web Conference Committee (IW3C2), WWW 2005, Chiba, Japan, May 10-14, pp. 2–11 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fernando Ferri
    • 1
  • Anna Formica
    • 2
  • Patrizia Grifoni
    • 1
  • Maurizio Rafanelli
    • 2
  1. 1.IRPPS-CNRRomeItaly
  2. 2.IASI-CNRRomeItaly

Personalised recommendations