Matching Schemas for Geographical Information Systems Using Semantic Information

  • Christoph Quix
  • Lemonia Ragia
  • Linlin Cai
  • Tian Gan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4278)


Integration and interoperability is a basic requirement for geographic information systems (GIS). The web provides access to geographic data in several ways: on the one hand, web-based interactive GIS applications provide maps and routing information to end users; on the other hand, the data of some GIS can be accessed in a programmatic way using a web service. Thereby, the data is made available for other GIS applications. However, integrating data from various sources is a tedious task which requires the mapping of the involved schemas as a first step. Schema matching analyzes and identifies similarities of two schemas, but all approaches can be only semi-automatic as human intervention is required to verify the result of a schema matching algorithm. In this paper, we present an approach that improves the matching result of existing solutions by using semantic information provided by the context of the geographic application. This reduces the effort for manually correcting the results which has been validated in several application examples.


Geographical Information System Geographic Information System Semantic Information Schema Match Ontology Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aumüller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and Ontology Matching with COMA++. In: Proc. Intl. Conf. on Management of Data (SIGMOD) (2005)Google Scholar
  2. 2.
    Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema matching. SIGMOD Record 33(4), 38–43 (2004)CrossRefGoogle Scholar
  3. 3.
    Cox, S., Daisey, P., Lake, R., Portele, C., Whiteside, A.: OpenGIS Geography Markup Language (GML) Implementation Specification. Version 3.1.0 (2004) Google Scholar
  4. 4.
    Do, H.H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: Proc. Conf. on Very Large Data Bases (VLDB), pp. 610–621 (2001)Google Scholar
  5. 5.
    Devogele, T., Parent, C., Spaccapietra, S.: On Spatial Database Integration. Intl. Journal of Geographical Information Science 12(4), 335–352 (1998)CrossRefGoogle Scholar
  6. 6.
    Euzenat, J. (ed.): State of the art in ontology alignment. Deliverable 2.2.3, Knowledge Web Project (2004),
  7. 7.
    Fonseca, F., Davis, C., Camara, G.: Bridging ontologies and conceptual schemas in geographic information integration. Geoinformatica 7(4), 355–378 (2003)CrossRefGoogle Scholar
  8. 8.
    Kavouras, M., Kokla, M., Tomai, E.: Comparing categories among geographic ontologies. Computers & Geosciences 31(2), 145–154 (2005)CrossRefGoogle Scholar
  9. 9.
    Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe – A Generic Role Based Metamodel for Model Management. In: Proc. 4th Intl. Conf. on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus (2005)Google Scholar
  10. 10.
    Kim, W., Seo, J.: Classifying Schematic and Data Heterogeneity in Multi-database Systems. IEEE Computer 24(12), 12–18 (1991)Google Scholar
  11. 11.
    Klein, M., Fensel, D., Harmelen, F., Horrocks, I.: The Relation between Ontology and Schema-languages: Translating OIL-specifications in XML-Schema. In: Proc. ECAI Workshop on Applications of Ontologies and Problem-Solving Methods, Berlin (2000)Google Scholar
  12. 12.
    Kokla, M., Kavouras, M.: Fusion of top-level and geographic domain ontologies based on context formation and complementarity. Intl. Journal of Geographical Information Science 15(7), 679–687 (2001)CrossRefGoogle Scholar
  13. 13.
    Manoah, S., Boucelma, O., Lassoued, Y.: Schema Matching in GIS. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS, vol. 3192, pp. 500–509. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In: Proc. Conf. on Very Large Data Bases (VLDB), Rome, Italy, pp. 49–58 (2001)Google Scholar
  15. 15.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm. In: Proc. 18th International Conference on Data Engineering (ICDE), San Jose, CA, pp. 117–128 (2002)Google Scholar
  16. 16.
    Nyerges, L.T.: Schema integration analysis for the development of GIS databases. Intl. Journal of Geographical Information Systems 3(2), 153–183 (1989)CrossRefGoogle Scholar
  17. 17.
    Park, J.: Schema Integration Methodology and Toolkit for Heterogeneous and Distributed Geographic Databases. Working Paper, University of Minnesota (2001),
  18. 18.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Rodríguez, M.A., Egenhofer, M.J.: Determining Semantic Similarity Among Entity Classes from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering 15(2), 442–456 (2003)CrossRefGoogle Scholar
  20. 20.
    Shvaiko, P., Euzenat, J.: A Survey of Schema-based Matching Approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Xu, L., Embley, D.W.: Using domain ontologies to discover direct and indirect matches for schema elements. In: Proc. Workshop on Semantic Integration at ISWC 2003, Sanibel Island, FL (2003) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christoph Quix
    • 1
  • Lemonia Ragia
    • 1
  • Linlin Cai
    • 1
  • Tian Gan
    • 1
  1. 1.Informatik VRWTH Aachen UniversityGermany

Personalised recommendations