Advertisement

Decentralized Resources Management for Grid

  • Thibault Bernard
  • Alain Bui
  • Olivier Flauzac
  • Cyril Rabat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4278)

Abstract

Among all components of a grid or peer-to-peer application, the resources management is unavoidable. Indeed, new resources like computational power or storage capacity must be quickly and efficiently integrated. This management can be achieved either by a fully centralized way (BOINC) or by a hierarchical way (Globus, DIET). In the latter case, there is a greater flexibility and a greater scalability. But the counterpart is the difficulty to design and to deploy such a solution, particularly if the resources are volatile.

In this article, we combine random walks and circulating word to derive a fully distributed solution to the resources management. Random walks have proved their efficiency in distributed computing and are well suited to dynamical networks like peer-to-peer or grid networks. There is no condition on nodes lifetime and we need only one application for each node.

Keywords

Random Walk Span Tree Maintenance Phase Grid Resource Topological Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufman Publishers, San Francisco (1999)Google Scholar
  2. 2.
    Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W., Tuecke, S.: A Resource Management Architecture for Metacomputing Systems. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 62–82. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Foster, I., Kesselman, C.: Globus: a metacomputing infrastructure toolkit. Supercomputer Applications 11(2), 115–128 (1997)CrossRefGoogle Scholar
  4. 4.
    Caron, E., Desprez, F., Lombard, F., Nicod, J.-M., Quinson, M., Suter, F.: A Scalable Approach to Network Enabled Servers. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 907–910. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Cao, J., Kwong, O.M.K., Wang, X., Cai, W.: A Peer-to-Peer Approach to Task Scheduling in Computation Grid. In: Li, M., Sun, X.-H., Deng, Q.-n., Ni, J. (eds.) GCC 2003. LNCS, vol. 3032, pp. 316–323. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Flauzac, O., Krajecki, M., Fugere, J.: CONFIIT: a middleware for peer to peer computing. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 69–78. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Gkantsidis, C., Mihail, M., Saberi, A.: Random Walks in Peer-to-Peer Networks. In: INFOCOM (2004)Google Scholar
  8. 8.
    Choi, W., Das, S., Cao, J., Datta, A.: Randomized dynamic route maintenance for adaptative routing multihop mobile ad hoc networks. Journal of Parallel and Distributed Computing 65, 107–123 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Rabat, C., Bui, A., Flauzac, O.: A random walk topology management solution for grid. In: Bui, A., Bui, M., Böhme, T., Unger, H. (eds.) IICS 2005. LNCS, vol. 3908, pp. 91–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Lovasz, L.: Random walks on graphs: A survey. In: Combinatorics: Paul Erdos is Eighty, vol. 2, pp. 353–398. Janos Bolyai Mathematical Society (1993)Google Scholar
  11. 11.
    Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences and the complexity of maze problems. In: 20th IEEE Annual Symposium on Foundations of Computer Science, pp. 218–223 (1979)Google Scholar
  12. 12.
    Bernard, T., Bui, A., Bui, M., Sohier, D.: A new method to automatically compute processing times for random walks based distributed algorithm. In: ISPDC 2003, vol. 2069, pp. 31–36. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  13. 13.
    Lavallée, I.: Algorithmique distribuée et parallèle. In: Hermes (ed.) Hermes (1990)Google Scholar
  14. 14.
    Flauzac, O.: Random circulating word information management for tree construction and shortest path routing tables computation. In: On Principle Of DIstributed Systems, Studia Informatica Universalis, pp. 17–32 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thibault Bernard
    • 1
  • Alain Bui
    • 1
  • Olivier Flauzac
    • 1
  • Cyril Rabat
    • 1
  1. 1.SysCom, CReSTIC, Université de Reims Champagne-ArdenneFrance

Personalised recommendations