T-Lex: A Role-Based Ontology Engineering Tool

  • Damien Trog
  • Jan Vereecken
  • Stijn Christiaens
  • Pieter De Leenheer
  • Robert Meersman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4278)


In the DOGMA ontology engineering approach ontology construction starts from a (possibly very large) uninterpreted base of elementary fact types called lexons that are mined from linguistic descriptions (be it from existing schemas, a text corpus or formulated by domain experts). An ontological commitment to such ”lexon base” means selecting/reusing from it a meaningful set of facts that approximates well the intended conceptualization, followed by the addition of a set of constraints, or rules, to this subset. The commitment process is inspired by the fact-based database modeling method NIAM/ORM2, which features a recently updated, extensive graphical support. However, for encouraging lexon reuse by ontology engineers a more scalable way of visually browsing a large Lexon Base is important. Existing techniques for similar semantic networks rather focus on graphical distance between concepts and not always consider the possibility that concepts might be (fact-) related to a large number of other concepts. In this paper we introduce an alternative approach to browsing large fact-based diagrams in general, which we apply to lexon base browsing and selecting for building ontological commitments in particular. We show that specific characteristics of DOGMA such as grouping by contexts and its ”double articulation principle”, viz. explicit separation between lexons and an application’s commitment to them can increase the scalability of this approach. We illustrate with a real-world case study.


Norm Tree Ontological Commitment External Constraint Knowledge Engineer Ontology Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gomez-Perez, A., Angele, J., Fernandez-Lopez, M., Christophides, V., Stutt, A., Sure, Y.: A survey on ontology tools. In: OntoWeb deliverable 1. OntoWeb deliverable 1.3, Universidad Politecnia de Madrid (2002)Google Scholar
  2. 2.
    Duineveld, A.J., Stoter, R., Weiden, M.R., Kenepa, B., Benjamins, V.R.: Wondertools?: a comparative study of ontological engineering tools. Int. J. Hum.-Comput. Stud. 52(6), 1111–1133 (2000)CrossRefGoogle Scholar
  3. 3.
    Lambrix, P., Edberg, A.: Evaluation of ontology merging tools in bioinformatics. In: Pacific Symposium on Biocomputing, pp. 589–600 (2003)Google Scholar
  4. 4.
    Gómez-Pérez, A., Corcho, O., Fernández-López, M.: Ontological Engineering. Springer, New York (2003)Google Scholar
  5. 5.
    Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first ontology. Technical Report KSL-01-05, Knowledge Systems Laboratory, Stanford University, Stanford, CA, 94305, USA (2001)Google Scholar
  6. 6.
    Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy, N.F., Tu, S.W.: The evolution of protégé: an environment for knowledge-based systems development. Int. J. Hum.-Comput. Stud. 58(1), 89–123 (2003)CrossRefGoogle Scholar
  7. 7.
    Storey, M., Musen, M., Silva, J., Best, C., Ernst, N., Fergerson, R., Noy, N.: Jambalaya: Interactive visualization to enhance ontology authoring and knowledge acquisition in protege (2001)Google Scholar
  8. 8.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  9. 9.
    Fluit, C., Sabou, M., van Harmelen, F.: Ontology-based information visualization. In: Geroimenko, V. (ed.) Visualizing the Semantic Web, pp. 36–48. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Mutton, P., Golbeck, J.: Visualization of semantic metadata and ontologies. In: IV 2003: Proceedings of the Seventh International Conference on Information Visualization, Washington, DC, USA, p. 300. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  11. 11.
    Gabel, T., Sure, Y., Völker, J.: Kaon – ontology management infrastructure. SEKT informal deliverable 3.1.1.a, Institute AIFB, University of Karlsruhe (2004)Google Scholar
  12. 12.
    Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit: Collaborative ontology development for the Semantic Web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 221–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Bosca, A., Bonino, D., P.P.: Ontosphere: more than a 3d ontology visualization tool. In: SWAP 2005, the 2nd Italian Semantic Web Workshop. CEUR Workshop Proceedings, December 14-16 (2005)Google Scholar
  14. 14.
    De Leenheer, P., de Moor, A.: Context-driven disambiguation in ontology elicitation. In: Shvaiko, P., Euzenat, J. (eds.) Context and Ontologies: Theory, Practice and Applications, Pittsburg USA. AAAI Technical Report, vol. WS-05-01, pp. 17–24. AAAI Press, Menlo Park (2005)Google Scholar
  15. 15.
    Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering. SIGMOD Record Special Issue on Semantic Web, Database Management and Information Systems 31(4), 12–17 (2002)Google Scholar
  16. 16.
    Guarino, N., Giaretta, P.: Ontologies and knowledge bases: Towards a terminological clarification. In: Mars, N.J.I. (ed.) Towards Very Large Knowledge Bases. IOS Press, Amsterdam (1995)Google Scholar
  17. 17.
    Meersman, R.: Web and ontologies: Playtime or business at the last frontier in computing? In: Proceedings of the NSF-EU Workshop on Database and Information Systems Research for Semantic Web and Enterprises (online), pp. 61–67 (2002)Google Scholar
  18. 18.
    De Leenheer, P., Meersman, R.: Towards a formal foundation of DOGMA ontology. part i: Lexon Base and Concept Definition Server. Technical Report STAR-2005-06, STARLab (2005)Google Scholar
  19. 19.
    De Leenheer, P., de Moor, A., Meersman, R.: Context dependency management in interorganizational ontology engineering. Technical Report STAR-2006-02, STARLab, Brussel (2006)Google Scholar
  20. 20.
    Halpin, T.: ORM 2. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 676–687. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Halpin, T.: Information Modeling and Relational Databases: From Conceptual Analysis to Logical Design. Morgan Kaufmann, San Francisco (2001)Google Scholar
  22. 22.
    Pretorious, J.A.: Lexon visualization: Visualizing binary fact types in ontology bases. In: IV, pp. 58–63 (2004)Google Scholar
  23. 23.
    Verheyden, P., De Bo, J., Meersman, R.: Semantically unlocking database content through ontology-based mediation. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 109–126. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Coessens, B., Christiaens, S., Verlinden, R.: Ontology guided data integration for computational prioritisation of disease genes. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 689–698. Springer, Heidelberg (accepted, 2006) (in press)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Damien Trog
    • 1
  • Jan Vereecken
    • 1
  • Stijn Christiaens
    • 1
  • Pieter De Leenheer
    • 1
  • Robert Meersman
    • 1
  1. 1.Semantics Technology and Applications Laboratory (STARLab), Department of Computer ScienceVrije Universiteit BrusselBRUSSELS 5Belgium

Personalised recommendations