Modeling and Storing Scientific Protocols

  • Natalia Kwasnikowska
  • Yi Chen
  • Zoé Lacroix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4277)


We propose an abstract model for scientific protocols, where several atomic operators are proposed for protocol composition. We distinguish two different layers associated with scientific protocols: design and implementation, and discuss the mapping between them. We illustrate our approach with a representative example and describe ProtocolDB, a scientific protocol repository currently in development. Our approach benefits scientists by allowing the archiving of scientific protocols with the collected data sets to constitute a scientific portfolio for the laboratory to query, compare and revise protocols.


Protocol Design Design Step Protocol Implementation Conceptual Type Implementation Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lawson, A.: Studying for Biology. Addison-Wesley, Reading (1995)Google Scholar
  2. 2.
    Stevens, R., Goble, C.A., Baker, P.G., Brass, A.: A classification of tasks in bioinformatics. Bioinformatics 17(1), 180–188 (2001)CrossRefGoogle Scholar
  3. 3.
    Bartlett, J.C., Toms, E.G.: Developing a Protocol for Bioinformatics Analysis: An Integrated Information Behavior and Task Analysis Approach. Journal of the American Society for Information Science and Technology 56(5), 469–482 (2005)CrossRefGoogle Scholar
  4. 4.
    Tröger, A., Fernandes, A.: A language for comprehensively supporting the in vitro experimental process in silico. In: Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2004), pp. 47–56 (2004)Google Scholar
  5. 5.
    Chen, I.M.A., Markowitz, V.M.: An overview of the object protocol model (opm) and the opm data management tools. Inf. Syst. 20(5), 393–418 (1995)CrossRefGoogle Scholar
  6. 6.
    Ailamaki, A., Ioannidis, Y.E., Livny, M.: Scientific workflow management by database management. In: SSDBM, pp. 190–199 (1998)Google Scholar
  7. 7.
    Shankar, S., Kini, A., DeWitt, D.J., Naughton, J.: Integrating databases and workflow systems. SIGMOD Rec. 34(3), 5–11 (2005)CrossRefGoogle Scholar
  8. 8.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A tool for the composition and enactment of bioinformatics workflows. Bioinformatics Journal 20(17), 3045–3054 (2004)CrossRefGoogle Scholar
  9. 9.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency and Computation: Practice & Experience, Special Issue on Scientific Workflows (to appear, 2005)Google Scholar
  10. 10.
    Ludäscher, B., Altintas, I., Gupta, A.: Compiling abstract scientific workflows into web service workflows. In: SSDBM, pp. 251–254. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  11. 11.
    Medeiros, C., Alcazar, J., Digiampietri, L., Pastorello, G., Santanche, A., Torres, R., Madeira, E.: WOODSS and the Web: annotating and reusing scientific workflows. SIGMOD Record 34(3), 18–23 (2005)CrossRefGoogle Scholar
  12. 12.
    Hashmi, N., Lee, S., Cummings, M.: Abstracting Workflows: Unifying Bioinformatics Task Conceptualization and Specification Through Semantic Web Services. In: W3C Semantic Web for Life Sciences position paper (2004)Google Scholar
  13. 13.
    Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: a virtual data system for representing, querying and automating data derivation. In: SSDBM, p. 37 (2002)Google Scholar
  14. 14.
    Zhao, Y., Dobson, J., Foster, I., Moreau, L., Wilde, M.: A notation and system for expressing and executing cleanly typed workflows on messy scientific data. ACM SIGMOD Record 34, 37–43 (2005)CrossRefGoogle Scholar
  15. 15.
    Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., Van den Bussche, J.: Petri net + nested relational calculus = dataflow. Technical Report TR UA 2006-04, University of Antwerp, Belgium (2006)Google Scholar
  16. 16.
    Cohen-Boulakia, S., Davidson, S., Froidevaux, C., Lacroix, Z., Vidal, M.E.: Path-based systems to guide scientists in the maze of biological data sources. Journal of Bioinformatics and Computational Biology (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Natalia Kwasnikowska
    • 1
  • Yi Chen
    • 2
  • Zoé Lacroix
    • 2
  1. 1.Hasselt University and Transnational University of LimburgBelgium
  2. 2.Arizona State UniversityTempeUSA

Personalised recommendations