Parallelization of a Discrete Radiosity Method Using Scene Division

  • Rita Zrour
  • Fabien Feschet
  • Rémy Malgouyres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4276)


We present in this article a parallelization of a discrete radiosity method, based on scene division and achieved on a cluster of workstations. This method is based on discretization of surfaces into voxels and not into patches like most of the radiosity methods do. Voxels are stocked into visibility lists representing the space partition into discrete lines and allowing mutually visible neighbour voxels to exchange their radiosities. The parallelization distributes the scene among the processors by dividing it into parts. Exchanges of radiosity values are accomplished between neighbourhood voxels belonging to a same list but located on different processors. This parallelization improved time and distributed memory offering thus the capability to deal with large scenes.


Communication Matrice Shared Memory System Empty List Discrete Line Parallel Rendering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chatelier, P.Y., Malgouyres, R.: A Low Complexity Discrete Radiosity Method. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 392–403. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Zrour, R., Chatelier, P.Y., Feschet, F., Malgouyres, R.: Parallelization of a discrete radiosity method. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 740–750. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Arnaldi, B., Priol, T., Renambot, L., Pueyo, X.: Visibility Masks for solving Complex Radiosity Computations on Mutliprocessors. Parallel Computing 23(7), 887–897 (1988)CrossRefGoogle Scholar
  4. 4.
    Renambot, L., Arnaldi, B., Priol, T., Pueyo, X.: Towards Efficient Parallel Radiosity for DSM-based Parallel Computers Using Virtual Interfaces. In: Proceedings of the IEEE symposium on Parallel rendering, pp. 76–86 (1993)Google Scholar
  5. 5.
    Funkhouser, T.A.: Coarse-grained parallelism for hierarchical radiosity using group iterative methods. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 343–352 (1996)Google Scholar
  6. 6.
    Malgouyres, R.: A Discrete Radiosity Method. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 428–438. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Podehl, A., Rauber, T., Runger, G.: A Shared-Memory Implementation of the Hierarchical Radiosity Method. Theoretical Computer Science 196, 215–240 (1998)MATHCrossRefGoogle Scholar
  8. 8.
    Bouatouch, K., Mebard, D., Priol, T.: Parallel Radiosity Using a Shared Virtual Memory. In: Proceedings of Advanced Techniques in Animation, Rendering and Visualization, pp. 71–83 (1993)Google Scholar
  9. 9.
    Sturzlinger, W., Wild, C.: Parallel Visibility Calculations for Radiosity. In: Proceedings of the Third Joint International Conference on Vector and Parallel Processing: Parallel Processing, pp. 405–413 (1994)Google Scholar
  10. 10.
    BarLev, A., Itzkovitz, A., Raviv, A., Schuster, A.: Parallel Vertex-To-Vertex Radiosity on a Distributed Shared Memory System. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 238–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Sillion, F., Hasenfratz, J.M.: Efficient Parallel Refinement for Hierarchial Radiosity on a DSM Computer. In: Third Eurographics Workshop on Parallel Graphics and Visualisation, pp. 61–74 (2000)Google Scholar
  12. 12.
    Guitton, P., Roman, J., Subrenat, G.: Implementation Results and Analysis of a Parallel Progressive Radiosity. In: Proceedings of the IEEE symposium on Parallel rendering, pp. 31–38 (1995)Google Scholar
  13. 13.
    Cohen, M.F., Greenberg, D.F.: The hemi-cube: a radiosity solution for complex environments. In: SIGGRAPH 1985: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, vol. 19(3), pp. 31–40 (1985)Google Scholar
  14. 14.
    Feng, C., Yang, S.: A parallel hierarchical radiosity algorithm for complex scenes. In: Proceedings of the IEEE symposium on Parallel rendering, pp. 71–78 (1997)Google Scholar
  15. 15.
    Meneveaux, D., Bouatouch, K., Maisel, E., Delmont, R.: A New Partioning Method for Architectural Environments. The Journal of Visualization and Computer Animation 9(4), 195–213 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rita Zrour
    • 1
  • Fabien Feschet
    • 1
  • Rémy Malgouyres
    • 1
  1. 1.LAICUniversity of AuvergneAubière CedexFrance

Personalised recommendations