SASMINT System for Database Interoperability in Collaborative Networks

  • Ozgul Unal
  • Hamideh Afsarmanesh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4275)


In most suggested systems aiming to enable interoperability and collaboration among heterogeneous databases, schema matching and integration is performed manually. The SASMINT system introduced in this paper proposes a (semi-) automated approach to tackle the following: 1) identification of the syntactic/semantic/structural similarities between the donor and recipient schemas to resolve their heterogeneities, 2) suggestion of corresponding mappings among the pairs of matched components, 3) facilitation of user-interaction with the system, necessary for validation/enhancement of results, and 4) generation of a proposed integrated schema, and a set of derivation rules for each of its components to support query processing against integrated sources. Unlike other systems that typically apply one specific algorithm, SASMINT applies a hybrid approach for schema matching that combines a selection of algorithms from NLP and graph theory. Furthermore, SASMINT exploits the user-validated schema matching results in its semi-automatic generation of the integrated schema and its necessary derivations.


Semantic Similarity Schema Match Database Schema Collaborative Network Levenshtein Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Camarinha-Matos, L.M., Afsarmanesh, H., Ollus, M.: ECOLEAD: A Holistic Approach to Creation and Management of Dynamic Virtual Organizations. In: Proc. of PRO-VE 2005, pp. 3–16 (2005)Google Scholar
  2. 2.
    Afsarmanesh, H., Camarinha-Matos, L.M.: A Framework for Management of Virtual Organizations Breeding Environments. In: Proc. of PRO-VE 2005, pp. 35–48 (2005)Google Scholar
  3. 3.
    Sheth, A., Larson, J.: Federated Database Systems for Managing Distributed, Heterogeneous, and Autonomous Databases. ACM Computing Surveys 22(3), 183–236 (1990)CrossRefGoogle Scholar
  4. 4.
    Tuijnman, F., Afsarmanesh, H.: Management of Shared Data in Federated Cooperative PEER Environment. International Journal of Intelligent & Cooperative Information Systems 2(4), 451–473 (1993)CrossRefGoogle Scholar
  5. 5.
    Unal, O., Afsarmanesh, H.: Interoperability in Collaborative Network of Biodiversity Organizations. In: Proc. of PRO-VE 2006 (accepted for Publication, 2006)Google Scholar
  6. 6.
    Hammer, J., McLeod, D.: An Approach to Resolving Semantic Heterogeneity in a Federation of Autonomous, Heterogeneous Database Systems. International Journal of Intelligent & Cooperative Information Systems 2(1), 51–83 (1993)CrossRefGoogle Scholar
  7. 7.
    Bergamaschi, S., et al.: A Semantic Approach to Information Integration: the MOMIS project. In: Proc. of Sesto Convegno della Associazione Italiana per l’Intelligenza Artificiale, AI*IA 1998 (1998)Google Scholar
  8. 8.
    Bayardo, R.J., et al.: InfoSleuth: Agent-Based Semantic Integration of Information in Open and Dynamic Environments. In: Proc. of ACM SIGMOD International Conference on Management of Data (1997)Google Scholar
  9. 9.
    Arens, Y., Knoblock, C.A., Shen, W.-M.: Query Reformulation for Dynamic Information Integration. Journal of Intelligent Information Systems, 99–130 (1996)Google Scholar
  10. 10.
    Mena, E., et al.: OBSERVER: An Approach for Query Processing in Global Information Systems based on Interoperation across Pre-existing Ontologies. Distributed and Parallel Databases Journal 8(2), 223–271 (2000)CrossRefGoogle Scholar
  11. 11.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proc. of VLDB, pp. 49–58 (2001)Google Scholar
  12. 12.
    Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching Approaches. In: Proc. of VLDB, pp. 610–621 (2002)Google Scholar
  13. 13.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to Schema Matching. In: Proc. of ICDE (2002)Google Scholar
  14. 14.
    Mitra, P., Wiederhold, G., Decker, S.: A scalable framework for the interoperation of information sources. In: Proc. of. International Semantic Web Working Symposium (2001)Google Scholar
  15. 15.
    Doan, A., et al.: Learning to Map between Ontologies on the Semantic Web. In: Proc. of World-Wide Web Conf. (WWW-2002) (2002)Google Scholar
  16. 16.
    Miller, R.J., Haas, L.M., Hernandez, M.A.: Schema Mapping as Query Discovery. In: Proc. of VLDB, pp. 77–88 (2000)Google Scholar
  17. 17.
    Embley, D.W., Xu, L., Ding, Y.: Automatic direct and indirect schema mapping: Experiences and lessons learned. ACM SIGMOD Record 33(4), 14–19 (2004)CrossRefGoogle Scholar
  18. 18.
    Bernstein, P.A., et al.: Industrial-Strength Schema Matching. ACM SIGMOD Record 33(4), 38–43 (2004)CrossRefGoogle Scholar
  19. 19.
    Rahm, E., Do, H.-H., Maßmann, S.: Matching Large XML Schemas. ACM SIGMOD Record 33(4), 26–31 (2004)CrossRefGoogle Scholar
  20. 20.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Cybernetics and Control Theory 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  21. 21.
    Monge, A.E., Elkan, C.: The Field Matching Problem: Algorithms and Applications. In: Second International Conference on Knowledge Discovery and Data Mining, pp. 267–270 (1996)Google Scholar
  22. 22.
    Jaro, M.A.: Probabilistic linkage of large public health. Statistics in Medicine 14, 491–498 (1995)CrossRefGoogle Scholar
  23. 23.
    Salton, G., Yang, C.S.: On the specification of term values in automatic indexing. Journal of Documentation (29), 351–372 (1973)CrossRefGoogle Scholar
  24. 24.
    Jaccard, P.: The distribution of flora in the alpine zone. The New Phytologist 11(2), 37–50 (1912)CrossRefGoogle Scholar
  25. 25.
    Cleverdon, C.W., Keen, E.M.: Factors determining the performance of indexing systems, volume 2: test results, Aslib Cranfield Research Project. Cranfield Institute of Technology (1966)Google Scholar
  26. 26.
    Rijsbergen, C.J.v.: Information Retrieval. Butterworths, London (1979)Google Scholar
  27. 27.
    Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: 32nd Annual Meeting of the Association for Computational Linguistics (1994)Google Scholar
  28. 28.
    Fellbaum, C.: An Electronic Lexical Database. MIT press, Cambridge (1998)MATHGoogle Scholar
  29. 29.
    Lesk, M.: Automatic Sense Disambiguation Using Machine Readable Dictionaries: How to Tell a Pine Code from an Ice Cream Cone. In: Proc. of 5th International Conference on Systems Documentation, pp. 24–26 (1986)Google Scholar
  30. 30.
    Blondel, V., et al.: A Measure of Similarity between Graph Vertices: Applications to Synonym Extraction and Web Searching. Journal of SIAM Review 46(4), 647–666 (2004)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Afsarmanesh, H., et al.: The PEER Information Management Language User Manual. Technical Report CS-94-14, Department of Computer Systems, University of Amsterdam (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ozgul Unal
    • 1
  • Hamideh Afsarmanesh
    • 1
  1. 1.Informatics InstituteUniversity of Amsterdam

Personalised recommendations