Towards an Inductive Methodology for Ontology Alignment Through Instance Negotiation

  • Ignazio Palmisano
  • Luigi Iannone
  • Domenico Redavid
  • Giovanni Semeraro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4275)


The Semantic Web needs methodologies to accomplish actual commitment on shared ontologies among different actors in play. In this paper, we propose a machine learning approach to solve this issue relying on classified instance exchange and inductive reasoning. This approach is based on the idea that, whenever two (or more) software entities need to align their ontologies (which amounts, from the point of view of each entity, to add one or more new concept definitions to its own ontology), it is possible to learn the new concept definitions starting from shared individuals (i.e. individuals already described in terms of both ontologies, for which the entities have statements about classes and related properties); these individuals, arranged in two sets of positive and negative examples for the target definition, are used to solve a learning problem which as solution gives the definition of the target concept in terms of the ontology used for the learning process. The method has been applied in a preliminary prototype for a small multi-agent scenario (where the two entities cited before are instantiated as two software agents). Following the prototype presentation, we report on the experimental results we obtained and then draw some conclusions.


Description Logic Concept Learn Inductive Logic Programming Ontology Alignment Ontological Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)Google Scholar
  2. 2.
    Gruber, T.R.: A translation approach to portable ontology specifications (1993)Google Scholar
  3. 3.
    Noy, N.F.: Tools for mapping and merging ontologies. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 365–384. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y.: Learning to map between ontologies on the semantic web. In: WWW, pp. 662–673 (2002)Google Scholar
  5. 5.
    Doan, A., Domingos, P., Halevy, A.Y.: Learning to match the schemas of data sources: A multistrategy approach. Machine Learning 50, 279–301 (2003)MATHCrossRefGoogle Scholar
  6. 6.
    Natalya, F., Noy, M.A.M.: The prompt suite: interactive tools for ontology merging and mapping. International Journal of Human-Computer Studies 59, 983–1024 (2003)CrossRefGoogle Scholar
  7. 7.
    Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with APFEL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 186–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Mitchell, T.M.: Concept Learning and General to Specific Ordering. In: Machine Learning, pp. 20–51. McGraw-Hill, New York (1997)Google Scholar
  9. 9.
    dAmato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive description logics. In: Proceedings of CILC 2005 (2005)Google Scholar
  10. 10.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  11. 11.
    van der Laag, P.R.J., Nienhuys-Cheng, S.H.: Existence and nonexistence of complete refinement operators. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 307–322. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS, vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Vere, S.: Multilevel counterfactuals for generalizations of relational concepts and productions. Artificial Intelligence 14, 139–164 (1980)MATHCrossRefGoogle Scholar
  16. 16.
    Teege, G.: A subtraction operation for description logics. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning, pp. 540–550. Morgan Kaufmann, San Francisco (1994)Google Scholar
  17. 17.
    Winston, P.: Learning Structural Descriptions from Examples. Ph.D. dissertation. MIT, Cambridge (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ignazio Palmisano
    • 1
  • Luigi Iannone
    • 2
  • Domenico Redavid
    • 1
  • Giovanni Semeraro
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di Bari, Campus UniversitarioBariItaly
  2. 2.Computer Science DepartmentLiverpool UniversityLiverpoolUK

Personalised recommendations