Semantic Similarity of Ontology Instances Tailored on the Application Context

  • Riccardo Albertoni
  • Monica De Martino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4275)


The paper proposes a framework to assess the semantic similarity among instances within an ontology. It aims to define a sensitive measurement of semantic similarity, which takes into account different hints hidden in the ontology definition and explicitly considers the application context. The similarity measurement is computed by combining and extending existing similarity measures and tailoring them according to the criteria induced by the context. Experiments and evaluation of the similarity assessment are provided.


Semantic Similarity Application Context Ontology Model Similarity Assessment Semantic Similarity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehrig, M., Haase, P., Stojanovic, N., Hefke, M.: Similarity for Ontologies - A Comprehensive Framework. In: ECIS 2005, Regensburg, Germany (2005)Google Scholar
  2. 2.
    Maedche, A., Zacharias, V.: Clustering Ontology-Based Metadata in the Semantic Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 348–360. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Rodriguez, M.A., Egenhofer, M.J.: Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure. IJGIS 18(3), 229–256 (2004)Google Scholar
  4. 4.
  5. 5.
    Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)CrossRefGoogle Scholar
  6. 6.
    Hierarchical Clustering Explorer, 3.0,
  7. 7.
    Euzenat, J., Valtchev, P.: Similarity-Based Ontology Alignment in OWL-Lite. In: ECAI, Valencia, Spain, pp. 333–337. IOS Press, Amsterdam (2004)Google Scholar
  8. 8.
    Euzenat, J., Le Bach, T., et al.: State of the Art on Ontology Alignment (2004),
  9. 9.
    Schwering, A.: Hybrid Model for Semantic Similarity Measurement. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1449–1465. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Usanavasin, S., Takada, S., Doi, N.: Semantic Web Services Discovery in Multi-ontology Environment. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 59–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web Services. In: Web Service Semantics:Towards Dynamic Business Integration, workshop at WWW (2005)Google Scholar
  12. 12.
    Albertoni, R., Bertone, A., De Martino, M.: Semantic Analysis of Categorical Metadata to Search for Geographic Information. In: Proceedings 16th International Workshop on Database and Expert Systems Applications, pp. 453–457. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  13. 13.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Bandar, Z., McLean, D.: An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources. IEEE Trans. Knowl. Data Eng. 15, 871–882 (2003)CrossRefGoogle Scholar
  15. 15.
    Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In: Proc. of the Fourteenth Int. Joint Conference on Artificial Intelligence, pp. 448–453 (1995)Google Scholar
  16. 16.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Proc. of the Fifteenth Int. Conference on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)Google Scholar
  17. 17.
    Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  18. 18.
    Gädenfors, P.: How to make the semantic web more semantic. In: FOIS, pp. 17–34. IOS Press, Amsterdam (2004)Google Scholar
  19. 19.
    Kashyap, V., Sheth, A.: Semantic and schematic similarities between database objects: a context-based approach. VLDB J 5(4), 276–304 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Riccardo Albertoni
    • 1
  • Monica De Martino
    • 1
  1. 1.CNR-IMATIGenovaItaly

Personalised recommendations