Virtual Integration of Existing Web Databases for the Genotypic Selection of Cereal Cultivars

  • Sonia Bergamaschi
  • Antonio Sala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4275)


The paper presents the development of a virtual database for the genotypic selection of cereal cultivars starting from phenotypic traits.

The database is realized by integrating two existing web databases, Gramene and Graingenes, and a pre-existing data source developed by the Agrarian Faculty of the University of Modena and Reggio Emilia. The integration process gives rise to a virtual integrated view of the underlying sources. This integration is obtained using the MOMIS system (Mediator envirOnment for Multiple Information Sources), a framework developed by the Database Group of the University of Modena and Reggio Emilia ( MOMIS performs information extraction and integration from both structured and semistructured data sources. Information integration is performed in a semi-automatic way, by exploiting the knowledge in a Common Thesaurus (defined by the framework) and the descriptions of source schemas with a combination of clustering and Description Logics techniques. Momis allows querying information in a transparent mode for the user regardless of the specific languages of the sources. The result obtained by applying MOMIS to Gramene and Graingenes web databases is a queriable virtual view that integrates the two sources and allow performing genotypic selection of cultivars of barley, wheat and rice based on phenotypic traits, regardless of the specific languages of the web databases. The project is conducted in collaboration with the Agrarian Faculty of the University of Modena and Reggio Emilia and funded by the Regional Government of Emilia Romagna.


Description Logic Virtual View Local Query Genotypic Selection Source Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in data warehouses. In: VLDB Conference, pp. 586–597 (2002)Google Scholar
  2. 2.
    Bergamaschi, S., Castano, S., Beneventano, D., Vincini, M.: Semantic Integration of Heterogeneous Information Sources. Special Issue on Intelligent Information Integration, Data & Knowledge Engineering 36(1), 215–249 (2001)MATHGoogle Scholar
  3. 3.
    Benassi, R., Bergamaschi, S., Fergnani, A., Miselli, D.: Extending a Lexicon Ontology for Intelligent Information Integration. In: European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, 22–27 August (2004)Google Scholar
  4. 4.
    Beneventano, D., Bergamaschi, S., Sartori, C., Vincini, M.: ODB-QOptimizer: a tool for semantic query optimization in OODB. ICDE 1997, UK (April 1997)Google Scholar
  5. 5.
    Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: The MOMIS approach to Information Integration. In: IEEE and AAAI International Conference on Enterprise Information Systems (ICEIS 2001), Setbal, Portugal, July 7-10 (2001)Google Scholar
  6. 6.
    Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Synthesizing an Integrated Ontology. IEEE Internet Computing 7(5), 42–51 (2003)CrossRefGoogle Scholar
  7. 7.
    Beneventano, D., Bergamaschi, S., Sartori, C.: Description Logics for Semantic Query Optimization in Object-Oriented Database Systems. ACM Transaction on Database Systems 28, 1–50 (2003)CrossRefGoogle Scholar
  8. 8.
    Beneventano, D., Bergamaschi, S.: Semantic Search Engines based on Data Integration Systems. In: Cardoso, J. (ed.) Semantic Web: Theory, Tools and Applicantions. Idea Group Publishing (May 2006)Google Scholar
  9. 9.
    Cattell, R.G.G., Barry, D.K.: The Object Data Standard: ODMG 3.0. Morgan Kaufmann, San Francisco (2000)Google Scholar
  10. 10.
    Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and efficient fuzzy match for online data cleaning. In: ACM SIGMOD Conference, pp. 313–324 (2003)Google Scholar
  11. 11.
    Galindo-Legaria, C.A.: Outerjoins as Disjunctions. In: SIGMOD Conference, pp. 348–358 (1994)Google Scholar
  12. 12.
    Halevy, A., Halevy, A.Y.: Answering queries using views: A survey. Very Large Database J. 10(4), 270–294 (2001)MATHCrossRefGoogle Scholar
  13. 13.
    Li, C., Yerneni, R., Vassalos, V., Garcia-Molina, H., Papakonstantinou, Y., Ullman, J., Valiveti, M.: Capability Based Mediation in TSIMMIS. In: SIGMOD 1998, Seattle (June 1998)Google Scholar
  14. 14.
    Miller, A.G.: A lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  15. 15.
    Miller, R.J., Hernandez, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Popa, L., Fagin, R.: The Clio project: managing heterogeneity. ACM SIGMOD Record 30(1), 78–83 (2001)CrossRefGoogle Scholar
  16. 16.
    Naumann, F., Haussler, M.: Declarative Data Merging with Conflict Resolution. In: International Conference on Information Quality (IQ 2002), pp. 212–224 (2002)Google Scholar
  17. 17.
    Rajaraman, A., Ullman, J.D.: Integrating Information by Outerjoins and Full Disjunctions. In: PODS 1996, pp. 238–248 (1996)Google Scholar
  18. 18.
    Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for information integration. Inf. Syst. 26(8), 607–633 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Yan, L., Miller, R.J., Haas, L.M., Fagin, R.: Data-driven understanding and refinement of schema mappings. In: Proc. 2001 ACM SIGMOD Conference (SIGMOD 2001), pp. 485–496 (2001)Google Scholar
  20. 20.
    Zhang, Z., He, B., Chang, K.C.-C.: Light-weight Domain-based Form Assistant: Querying Web Databases On the Fly. In: VLDB 2005, pp. 97–108 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sonia Bergamaschi
    • 1
  • Antonio Sala
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversitá di Modena e ReggioEmilia

Personalised recommendations