This paper outlines a prototypical work bench which offers semantically enhanced analytical capabilities to the business analyst. The business case for such an environment is outlined and user scenario development used to illustrate system requirements. Based upon ideas from meta-discourse and exploiting advances within the fields of ontology engineering, annotation, natural language processing and personal knowledge management, the Analyst Work Bench offers the automated identification of, and between business discourse items with possible propositional content. The semantically annotated results are visually presented allowing personalised report path traversal marked up against the original source.


Natural Language Processing Information Item Ontology Engineering Ontology Base Business Analyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to meet new challenges in language engineering. Journal of Natural Language Engineering 10(3/4), 349–373 (2004)CrossRefGoogle Scholar
  2. 2.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Cao, T.-D., R, D.-K., Fiès, B.: An Ontology-Guided Annotation System for Technology Monitoring. In: Proc. of IADIS International WWW/Internet 2004 Conference (2004)Google Scholar
  4. 4.
    Caroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: implementing the semantic web recommendations. In: Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters (2004)Google Scholar
  5. 5.
    Crismore, A., Farnesworth, R.: Metadiscourse in popular and professional science discourse. In: Nash, W. (ed.) The Writing Scholar. Studies in Academic Discourse, pp. 119–136. Sage, New Bury Park (1990)Google Scholar
  6. 6.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proc. of the 40th Anniversary Meeting of the Association for Computational Linguistics (2002)Google Scholar
  7. 7.
    Cunninham, H., Bontcheva, K., Li, Y.: Knowledge Management and human language: Crossing the chasm. Journal of Knowledge Management 9(5), 108–131 (2005)CrossRefGoogle Scholar
  8. 8.
    De Bo, J., Spyns, P., Meersman, R.: Creating a “DOGMAtic” multilingual ontology infrastructure to support a semantic portal. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2003. LNCS, vol. 2889, pp. 253–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Fellbaum, C. (ed.): Wordnet, An Electronic Lexical Database. MIT Press, Cambridge (1998)MATHGoogle Scholar
  10. 10.
    Friedman, C., Hripcsak, G., Alderson, P., DuMouchel, W., Johnson, S., Clayton, P.: Natural Language Processing in an operational clinical information system. Journal of Natural Language Engineering 1(1), 83–103 (1995)CrossRefGoogle Scholar
  11. 11.
    Friedman, C., Hripcsak, G.: Evaluating Natural Language Processors in the Clinical Domain. Methods of Information in Medicine 37(4/5), 334–344 (1998)Google Scholar
  12. 12.
    Gao, Y., Zhao, G.: Knowledge-Based Information Extraction: A Case Study of Recognizing Emails of Nigerian Frauds. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 161–172. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Guarino, N., Masolo, C., Vetere, G.: OntoSeek: Content-Based Access to the Web. IEEE Intelligent Systems (4-5), 70–80 (1999)Google Scholar
  14. 14.
    Halpin, T.: Information Modeling and Relational Databases: From conceptual analysis to logical design. Morgan-Kaufmann, San Francisco (2001)Google Scholar
  15. 15.
    Hirschmann, L.: Language Understanding Evaluations: Lessons learned from MUC and ATIS. In: Rubio, A., Gallardo, N., Castro, R., Tejada, A. (eds.) 1st International Conference on Language Resources and Evaluation (LREC 1998), ELRA, pp. 117–122 (1998)Google Scholar
  16. 16.
    Hovy, E., Nirenburg, S.: Approximating an interlingua in a principled way. In: Proceedings of the DARPA Speech and Natural Language Workshop (1992), http://www.isi.edu/natural-language/people/hovy/papers/92darpa-il.pdf
  17. 17.
    Hyland, K.: Exploring corporate rhetoric: Metadiscourse in the CEO’s letter. The Journal of Business Communication (1998)Google Scholar
  18. 18.
    Hyland, K., Tse, P.: Metadiscourse in Academic Writing: A Reappraisal. Applied Linguistics 25(2), 156–177 (2004)CrossRefGoogle Scholar
  19. 19.
    Jarrar, M., Meersman, R.: Formal Ontology Engineering in the DOGMA Approach. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1238–1254. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Maynard, D., et al.: Ontology-based information extraction for market monitoring and technology watch. In: ESWC Workshop, End User Apects of the Semantic Web (2005)Google Scholar
  21. 21.
    McGuiness, D.: Question Answering on the Semantic Web. IEEE Intelligent Systems, January/February 2004, 82–85 (2004)Google Scholar
  22. 22.
    Meersman, R.: The Use of Lexicons and Other Computer-Linguistic Tools. In: Zhang, Y., Rusinkiewicz, M., Kambayashi, Y. (eds.) Semantics, Design and Cooperation of Database Systems, Proceedings of CODAS 1999, pp. 1–14. Springer, Heidelberg (1999)Google Scholar
  23. 23.
    Meersman, R.: Ontologies and Databases: More than a Fleeting Resemblance. In: d’Atri, A., Missikoff, M. (eds.) OES/SEO 2001 Rome Workshop. Luiss Publications (2001)Google Scholar
  24. 24.
    Moreale, E., Vargas-Vera, M.: Semantic Services in e-Learning: An Argumentation Case Study. Internat. Forum of Educational Technology & Society 4(7), 112–128 (2004)Google Scholar
  25. 25.
    Nirenburg, S., Raskin, V.: Ontological Semantics, Formal Ontology, and Ambiguity. In: Proceedings of the Second International Conference on Formal Ontology in Information Systems, pp. 151–161. ACM Press, New York (2001)Google Scholar
  26. 26.
    Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M.: KIM – semantic annotation platform. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 834–849. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Sager, N., Friedman, C., Lyman, M.: Medical Language Processing: computer management of narrative data. Addison-Wesley, Reading (1987)Google Scholar
  28. 28.
    Schank, R., Abelson, R.: Scripts, Plans, Goals and Understanding. Lawrence Erlbaum Associates, Hillsdale (1977)MATHGoogle Scholar
  29. 29.
    Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus Ontology engineering. In: Sheth, A., Meersman, R. (eds.) SIGMOD Record Special Issue, vol. 31(4), pp. 12–17 (2002)Google Scholar
  30. 30.
    Spyns, P.: Adapting the Object Role Modelling Method for Ontology Modelling. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 276–284. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Spyns, P.: Object Role Modelling for Ontology Engineering in the DOGMA Framework. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 710–719. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Thompson, G.: Intreraction in academic writing: Learning to argue with the reader. Applied Linguistics 22(1), 58–78 (2001)CrossRefGoogle Scholar
  33. 33.
    Verheyen, G., van Bekkum, P.: NIAM, aN Information Analysis Method. In: Olle, T., Sol, H., Verrijn-Stuart, A. (eds.) Information Systems Design Methodologies: A Comparative Review, North-Holland/IFIP WG8.1, pp. 537–590 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sean O’Riain
    • 1
  • Peter Spyns
    • 2
  1. 1.Semantic Infrastructure Research GroupEuropean Software CentreGalwayIreland
  2. 2.STAR LabVrije Universiteit BrusselBrusselBelgium

Personalised recommendations