In this paper, we will present an efficient approach for distributed inference. We use belief propagation’s message-passing algorithm on top of a DHT storing a Bayesian network. Nodes in the DHT run a variant of the spring relaxation algorithm to redistribute the Bayesian network among them. Thereafter correlated data is stored close to each other reducing the message cost for inference. We simulated our approach in Matlab and show the message reduction and the achieved load balance for random, tree-shaped, and scale-free Bayesian networks of different sizes.

As possible application, we envision a distributed software knowledge base maintaining encountered software bugs under users’ system configurations together with possible solutions for other users having similar problems. Users would not only be able to repair their system but also to foresee possible problems if they would install software updates or new applications.


Bayesian Network Random Network Node Degree Belief Propagation Overlay Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paskin, M.A., Guestrin, C.E., McFadden, J.: A robust architecture for distributed inference in sensor networks (2005)Google Scholar
  2. 2.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  3. 3.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting codes and decoding: Turbo codes. In: Proceedings of the IEEE International Communications Conference (1993)Google Scholar
  4. 4.
    Bickson, D., Malkhi, D., Rabinowitz, D.: Efficient large scale content distribution. In: Proceedings of the Workshop on Distributed Data and Structures (WDAS), Lausanne, Switzerland (2004)Google Scholar
  5. 5.
    Ihler, A.T., Fisher, J.W.I., Moses, R.L., Willsky, A.S.: Nonparametric belief propagation for self-calibration in sensor networks. In: Proceedings of the Third international symposium on Information processing in sensor networks, pp. 225–233. ACM Press, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Advances in Neural Information Processing Systems (NIPS), vol. 13, pp. 689–695. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network coordinate system. In: Proceedings of ACM SIGCOMM (2004)Google Scholar
  8. 8.
    Pietzuch, P., Shneidman, J., Welsh, M., Seltzer, M., Roussopoulos, M.: Path optimization in stream-based overlay networks. Technical Report TR26-04, Harvard University, Cambridge, Massachusetts (2004)Google Scholar
  9. 9.
    Aberer, K.: P-Grid: A Self-Organizing Access Structure for P2P Information Systems. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 179–194. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Weiss, Y.: Correctness of local probability propagation in graphical models with loops. Neural Computation 12(1), 1–41 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: ACM STOC (2000)Google Scholar
  12. 12.
    Bickson, D., Dolev, D., Weiss, Y., Aberer, K., Hauswirth, M.: Indexing data-oriented overlay networks using belief propagation. In: Proceedings of the Workshop on Distributed Data and Structures (WDAS), Santa Clara, CA, USA (2006)Google Scholar
  13. 13.
    Microsoft Corporation: Microsoft help and support (2006), http://support.microsoft.com/
  14. 14.
    The Mozilla Organization: Mozillazine knowledge base (2006), http://kb.mozillazine.org/
  15. 15.
    The Mozilla Organization: Bugzilla (2006), http://www.bugzilla.org/
  16. 16.
    Yamanishi, K.: Distributed cooperative bayesian learning strategies. In: COLT 1997: Proceedings of the tenth annual conference on Computational learning theory, pp. 250–262. ACM Press, New York (1997)CrossRefGoogle Scholar
  17. 17.
    Heckerman, D.: A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, USA (1995)Google Scholar
  18. 18.
    Chen, R., Sivakumar, K., Kargupta, H.: Collective mining of bayesian networks from distributed heterogeneous data. Knowledge and Information Systems 6(2), 164–187 (2004)Google Scholar
  19. 19.
    Batagelj, V.: Pajek - program for large networks analysis and visualization (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roman Schmidt
    • 1
  • Karl Aberer
    • 1
  1. 1.School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations