Block-Based Similarity Search on the Web Using Manifold-Ranking

  • Xiaojun Wan
  • Jianwu Yang
  • Jianguo Xiao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4255)


Similarity search on the web aims to find web pages similar to a query page and return a ranked list of similar web pages. The popular approach to web page similarity search is to calculate the pairwise similarity between web pages using the Cosine measure and then rank the web pages by their similarity values with the query page. In this paper, we proposed a novel similarity search approach based on manifold-ranking of page blocks to re-rank the initially retrieved web pages. First, web pages are segmented into semantic blocks with the VIPS algorithm. Second, the blocks get their ranking scores based on the manifold-ranking algorithm. Finally, web pages are re-ranked according to the overall retrieval scores obtained by fusing the ranking scores of the corresponding blocks. The proposed approach evaluates web page similarity at a finer granularity of page block instead of at the traditionally coarse granularity of the whole web page. Moreover, it can make full use of the intrinsic global manifold structure of the blocks to rank the blocks more appropriately. Experimental results on the ODP data demonstrate that the proposed approach can significantly outperform the popular Cosine measure. Semantic block is validated to be a better unit than the whole web page in the manifold-ranking process.


Ranking Score Cosine Measure Retrieval Score Page Segmentation Open Directory Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrival. ACM Press and Addison Wesley (1999)Google Scholar
  2. 2.
    Cai, D., He, X., Li, Z., Ma, W.-Y., Wen, J.-R.: Hierarchical clustering of WWW image search results using visual, textual and link analysis. In: Proceedings of the 12th ACM International Conference on Multimedia (2004)Google Scholar
  3. 3.
    Cai, D., He, X., Ma, W.-Y., Wen, J.-R., Zhang, H.-J.: Organizing WWW images based on the analysis of page layout and web link structure. In: Proceedings of the 2004 IEEE International Conference on Multimedia and EXPO (ICME 2004) (2004)Google Scholar
  4. 4.
    Cai, D., He, X., Wen, J.-R., Ma, W.-Y.: Block-level link analysis. In: Proceedings of the 27th Annual International ACM SIGIR Conference (SIGIR 2004) (2004)Google Scholar
  5. 5.
    Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y.: VIPS: a vision based page segmentation algorithm. Microsoft Technical Report, MSR-TR-2003-79 (2003)Google Scholar
  6. 6.
    Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y.: Block-based web Search. In: Proceedings of the 27th Annual International ACM SIGIR Conference (SIGIR 2004) (2004)Google Scholar
  7. 7.
    Chen, J., Zhou, B., Shi, J., Zhang, H.-J., Qiu, F.: Function-based object model towards website adaptation. In: Proceedings of the 10th World Wide Web conference (WWW10) (2001)Google Scholar
  8. 8.
    Cruz, I.F., Borisov, S., Marks, M.A., Webb, T.R.: Measuring structural similarity among web documents: preliminary results. In: Hersch, R.D., André, J., Brown, H. (eds.) RIDT 1998 and EPub 1998. LNCS, vol. 1375, pp. 513–524. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Dean, J., Henzinger, M.R.: Finding related pages in the World Wide Web. In: Proceedings of the Eighth International Conference on World Wide Web, pp. 1467–1479Google Scholar
  10. 10.
    Fogaras, D., Rácz, B.: Scaling link-based similarity search. Technical Report (2004)Google Scholar
  11. 11.
    Haveliwala, T.H., Gionis, A., Klein, D., Indyk, P.: Evaluating strategies for similarity search on the Web. In: Proceedings of WWW 2002, pp. 432–442 (2002)Google Scholar
  12. 12.
    Jeh, G., Widom, J.: SimRank: A measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002)Google Scholar
  13. 13.
    Joshi, S., Agrawal, N., Krishnapuram, R., Negi, S.: A bag of paths model for measuring structural similarity in web documents. In: Proceedings of the 9th ACM SIGKDD Conference, pp. 577–582 (2003)Google Scholar
  14. 14.
    Kovacevic, M., Diligenti, M., Gori, M., Milutinovic, V.: Recognition of common areas in a web page using visual information: a possible application in a page classification. In: Proceedings of 2002 IEEE International Conference on Data Mining (ICDM 2002), Maebashi City, Japan (2002)Google Scholar
  15. 15.
    Lin, Z., Lyu, M.R., King, I.: PageSim: a novel link-based measure of web page similarity. In: Proceeding of the 15th International World Wide Web Conference (2006)Google Scholar
  16. 16.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)Google Scholar
  17. 17.
    Song, R., Liu, H., Wen, J.-R., Ma, W.-Y.: Learning block importance models for web pages. In: Proceeding of the Thirteenth World Wide Web conference (WWW 2004), pp. 203–211 (2004)Google Scholar
  18. 18.
    Tombros, A., Ali, Z.: Factors affecting web page similarity. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 487–501. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)Google Scholar
  20. 20.
    Wan, X.: Link-based search of similar pages on the web. Master Thesis. Dalhouse University (2004)Google Scholar
  21. 21.
    Xue, G.-R., Zeng, H.-J., Chen, Z., Yu, Y.: MRSSA: an iterative algorithm for similarity spreading over interrelated objects. In: Proceedings of CIKM 2004 (2004)Google Scholar
  22. 22.
    Yu, S., Cai, D., Wen, J.-R., Ma, W.-Y.: Improving pseudo-relevance feedback in web information retrieval using web page segmentation. In: Proceedings of the Twelfth International World Wide Web Conference (WWW 2003) (2003)Google Scholar
  23. 23.
    Zhou, D., Bousquet, O., Lal, T.N., Weston, J., SchÖlkopf, B.: Learning with local and global consistency. In: Proceedings of NIPS 2003 (2003)Google Scholar
  24. 24.
    Zhou, D., Weston, J., Gretton, A., Bousquet, O., SchÖlkopf, B.: Ranking on data manifolds. In: Proceedings of NIPS 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaojun Wan
    • 1
  • Jianwu Yang
    • 1
  • Jianguo Xiao
    • 1
  1. 1.Institute of Computer Science and TechnologyPeking UniversityBeijingChina

Personalised recommendations