A Latent Image Semantic Indexing Scheme for Image Retrieval on the Web

  • Xiaoyan Li
  • Lidan Shou
  • Gang Chen
  • Lujiang Ou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4255)


In this paper, we present a novel latent image semantic indexing scheme for efficient retrieval of WWW images. We present a hierarchical image semantic structure called HIST, which captures image semantics in an ontology tree and visual features in a set of specific semantic domains. The query algorithm works in two phases. First, the ontology is used for quickly locating the relevant semantic domains. Second, within each semantic domain, the visual features are extracted, and similarity techniques are exploited to break the “dimensionality curse”. The target images can then be efficiently retrieved with high precision. The experimental results show that HIST achieves good query performance. Therefore, our method is promising in diverse Web image retrieval.


Visual Feature Image Retrieval Query Image Relevance Feedback Salient Object 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breaux, T.D., Reed, J.W.: Using Ontology in Hierarchical Information Clustering. In: Proceedings of the 38th Hawaii International Conference on System Sciences (2005)Google Scholar
  2. 2.
    Chen, J., Bouman, C., Dalton, J.: Hierarchical Browsing and Search of Large Image Databases. IEEE Trans on Image Processing 9(3), 442–455 (2000)CrossRefGoogle Scholar
  3. 3.
    Iqbal, Q., Aggarwal, J.K.: Feature Integration, Multi-image Queries and Relevance Feedback in Image Retrieval. In: 6th International Conference on Visual Information Systems (VISUAL 2003), Miami, Florida, September 24-26, pp. 467–474 (2003)Google Scholar
  4. 4.
    Iqbal, Q., Aggarwal, J.K.: CIRES: A System For Content-Based Retrieval in Digital Image Libraries. In: Seventh International Conference on Control, Automation, Robotics And Vision (ICARCV 2002), Singapore (December 2002)Google Scholar
  5. 5.
    Jeon, J., Lavrenko, V., Manmatha, R.: Automatic Image Annotation and Retrieval using Cross-Media Relevance Models. In: 26th Annual Int. ACM SIGIR Conference, Toronto, Canada (2003)Google Scholar
  6. 6.
    Khan, L., Wang, L.: Automatic Ontology Derivation Using Clustering for Image Classification. Multimedia Information System 9, 56–65 (2002)Google Scholar
  7. 7.
    Li, J., Wang, J.Z.: Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(9), 947–963 (2003)Google Scholar
  8. 8.
    Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent Semantic Indexing: A Probabilistic Analysis. In: Proc. 17th ACM PODS (1998)Google Scholar
  9. 9.
    Shen, H.T., Ooi, B.C., Tan, K.L.: Giving Meanings to WWW Images. In: Proceedings of the 8th ACM international conference on multimedia, Los Angeles, 30 October - 3 November, pp. 39–48 (2000)Google Scholar
  10. 10.
    Shen, H.T., Zhou, X.F., Cui, B.: Indexing Text and Visual Features for WWW Images. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 885–899. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Shyu, M.L., Chen, S., Chen, M., Zhang, C.: A Unified Framework for Image Database Clustering and Content-based Retrieval. In: ACM International Workshop On Multimedia Database (2004)Google Scholar
  12. 12.
    Shyu, M.L., Chen, S., Chen, M., Zhang, C., Shu, C.M.: MMM A Stochastic Mechanism for Image Database. In: Proceedings of the IEEE 5th International Symposium on Multimedia Software Engineering (MSE 2003), Taichung, Taiwan, ROC, December 10-12, pp. 188–195 (2003)Google Scholar
  13. 13.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-Based Image Retrieval at the End of the Early years. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 1349–1380 (2000)CrossRefGoogle Scholar
  14. 14.
    Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Transaction on Pattern Analysis and Machine Intelligence 23(9) (September 2001)Google Scholar
  15. 15.
    Wang, J.Z., Wiederhold, G., Firschein, O., Wei, S.X.: Content-based image indexing and searching using Daubechies’ wavelets. Int. J. on Digital Libraries 1(4), 311–328 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaoyan Li
    • 1
  • Lidan Shou
    • 1
  • Gang Chen
    • 1
  • Lujiang Ou
    • 1
  1. 1.Zhejiang UniversityHangzhouP.R. China

Personalised recommendations