Design and Implementation of Preference-Based Search

  • Paolo Viappiani
  • Boi Faltings
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4255)


Preference-based search is the problem of finding an item that matches best with a user’s preferences. User studies show that example-based tools for preference-based search can achieve significantly higher accuracy when they are complemented with suggestions chosen to inform users about the available choices. We present FlatFinder, an implementation of an example-based tool and discuss how such a tool as well as suggestions can be efficiently implemented even for large product databases.


Dominance Relation User Study Preference Model Preference Elicitation Decision Accuracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Equity, M.S.D.W.: Transportation e-commerce and the task of fulfilment (2000)Google Scholar
  2. 2.
    Fagin, R.: Fuzzy queries in multimedia database systems. In: PODS 1998, pp. 1–10. ACM Press, New York (1998)CrossRefGoogle Scholar
  3. 3.
    Yu, H., Hwang, S.-w., Chang, K.C.-C.: Rankfp: A framework for supporting rank formulation and processing. In: ICDE 2005, pp. 514–515 (2005)Google Scholar
  4. 4.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and Sons, New York (1976)Google Scholar
  5. 5.
    Kiesling, W.: Foundations of preferences in database systems. In: VLDB 2002, pp. 311–322 (2002)Google Scholar
  6. 6.
    Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models: The automated travel assistant. In: User Modeling 1997 (1997)Google Scholar
  7. 7.
    Payne, J., Bettman, J., Johnson, E.: The Adaptive Decision Maker. Cambridge University Press, Cambridge (1993)Google Scholar
  8. 8.
    Pu, P., Chen, L.: Integrating tradeoff support in product search tools for e-commerce sites. In: Riedl, J., Kearns, M.J., Reiter, M.K. (eds.) ACM Conference on Electronic Commerce, pp. 269–278. ACM Press, New York (2005)CrossRefGoogle Scholar
  9. 9.
    Pu, P., Faltings, B.: Enriching buyers’ experiences: the smartclient approach. In: SIGCHI conference on Human factors in computing systems, pp. 289–296. ACM Press, New York (2000)CrossRefGoogle Scholar
  10. 10.
    Pu, P., Faltings, B.: Decision tradeoff using example-critiquing and constraint programming. Constraints: An International Journal 9(4) (2004)Google Scholar
  11. 11.
    Pu, P., Kumar, P.: Evaluating example-based search tools. In: ACM Conference on Electronic Commerce (EC 2004) (2004)Google Scholar
  12. 12.
    Pu, P., Viappiani, P., Faltings, B.: Increasing user decision accuracy using suggestions. In: CHI 2006 (April 2006)Google Scholar
  13. 13.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 763–777. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Tversky, A.: Judgement under uncertainity: Heuristics and biases (1974)Google Scholar
  15. 15.
    Viappiani, P., Faltings, B., Pu, P.: The lookahead principle for preference elicitation: Experimental results. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS, vol. 4027, pp. 378–389. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Viappiani, P., Faltings, B., Schickel-Zuber, V., Pu, P.: Stimulating preference expression using suggestions. In: Mixed-Initiative Problem-Solving Assistants. AAAI Fall Symposium Series, vol. FSS07-05, pp. 128–133. AAAI, Menlo Park (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Viappiani
    • 1
  • Boi Faltings
    • 1
  1. 1.Artificial Intelligence Laboratory (LIA)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations