An ISO TC 211 Conformant Approach to Model Spatial Integrity Constraints in the Conceptual Design of Geographical Databases

  • Alberto Belussi
  • Mauro Negri
  • Giuseppe Pelagatti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4231)


The ISO TC 211 standards have defined a set of formal models for the conceptual modeling of spatial data using the Unified Modeling Language (UML) and the geometry approach adopted by the ISO spatial data model and by the Geographic Mark-up Language (GML). This approach aims to define a conceptual model for the design of geographic databases and for the geospatial interoperability of heterogeneous spatial databases. The ISO standards are however complex and counterintuitive in dealing with spatial integrity constraints, which are fundamental for the expressiveness of a conceptual model in the geographic application domain. This paper improves the ISO approach by proposing a framework which allows the definition of powerful, easy to use, and ISO conformant modeling abstractions for topological spatial constraints. These modeling abstractions have been incorporated in the definition of the GeoUML conceptual model used in the Italian IntesaGIS project for the definition of the “core” database of the Italian Spatial Data Infrastructure.


Unify Modeling Language Structural Constraint Spatial Database Integrity Constraint Topological Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bédard, Y.: Visual Modelling of Spatial Databases: towards spatial PVL and UML. GEOMATICA 53, 169–186 (1999)Google Scholar
  2. 2.
    Belussi, A., Negri, M., Pelagatti, G.: GeoUML: an ISO TC 211 compatible data model for the conceptual design of geographical databases. D.E.I. - Politecnico di Milano 21 (2004)Google Scholar
  3. 3.
    Belussi, A., Negri, M., Pelagatti, G.: Modelling Spatial Whole-Part Relationships using an ISO-TC211 conformant approach. Will appear in Information and Software Technology (2006)Google Scholar
  4. 4.
    Borges, K.A.V., Laender, A.H.F., Davis, C.A.: Spatial Data Integrity Constraints in Object Oriented Geographic Data Modeling. In: 7th ACM-GIS, pp. 1–6 (1999)Google Scholar
  5. 5.
    Borges, K.A.V., Davis, C.A., Laender, A.H.F.: OMT-G: An Object Oriented Data Model for Geographic Applications. GeoInformatica 5, 221–260 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Brodeur, J., Bédard, Y., Proulx, M.J.: Modelling geospatial application databases using UML based repositories aligned with international standards in geomatics. In: 8th ACM-GIS, pp. 39–46 (2000)Google Scholar
  7. 7.
    Christensen, A.F., Tryfona, N., Jensen, C.S.: Requirements and Research Issues in Geographic Data modeling. In: ACM Int. Symp. on Advances in Geographic Information Systems, Atlanta, USA, pp. 2–8 (2001)Google Scholar
  8. 8.
    Clementini, E., Di Felice, P., Van Oosterom, P.: A Small Set of Formal Topological Relationships Suitable for End-User Interaction. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 277–295. Springer, Heidelberg (1993)Google Scholar
  9. 9.
    Cockcroft, S.: The design and Implementation of as repository for the management of spatial data integrity constraints. GeoInformatica 8, 49–69 (2004)CrossRefGoogle Scholar
  10. 10.
    Hadzilacos, T., Tryfona, N.: An Extended Entity-Relationship Model for Geographic Applications. SIGMOD Record 26, 24–29 (1997)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    ISO/TC 211 Geographic information/Geomatics, 19107 Geographic information - Spatial schema, text for FDIS, N. 1324 (2002)Google Scholar
  13. 13.
    ISO/TC 211, Geographic information/Geomatics, 19109, Geographic Information - Rules for application schema, text for FDIS, N. 1538 (2003)Google Scholar
  14. 14.
    ISO/TC 211, Geographic information/Geomatics, 19125, Geographic Information - Simple feature access, text for DIS, N. 1003 (2000)Google Scholar
  15. 15.
    Parent, C., Spaccapietra, S., Zimanyi, E., Donini, P., Plazanet, C., Vangenot, C.: Modeling spatial data in the MADS conceptual model. In: 8th Int. Symp. on Spatial Data Handling, Vancouver, Canada, pp. 138–150 (1998)Google Scholar
  16. 16.
    Price, R., Tryfona, N., Jensen, C.S.: Modeling Part-Whole Relationships for Spatial data. In: 8th ACM GIS, Washington D.C., USA, pp. 1–8 (2000)Google Scholar
  17. 17.
    Price, R., Tryfona, N., Jensen, C.S.: Modelling Topological Constraints in Spatial Part-Whole Relationships. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 27–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alberto Belussi
    • 1
  • Mauro Negri
    • 2
  • Giuseppe Pelagatti
    • 2
  1. 1.Dipartimento di InfomaticaUniversity of VeronaVeronaItaly
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations