Efficient OSPF Weight Allocation for Intra-domain QoS Optimization

  • Pedro Sousa
  • Miguel Rocha
  • Miguel Rio
  • Paulo Cortez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4268)


This paper presents a traffic engineering framework able to optimize OSPF weight setting administrative procedures. Using the proposed framework, enhanced OSPF configurations are now provided to network administrators in order to effectively improve the QoS performance of the corresponding network domain. The envisaged NP-hard optimization problem is faced resorting to Evolutionary Algorithms, which allocate OSPF weights guided by a bi-objective function. The results presented in this work show that the proposed optimization tool clearly outperforms common weight setting heuristics.


Multiobjective Optimization Service Level Agreement Delay Requirement Open Short Path First Demand Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, Z.: Internet QoS: Architectures and Mechanisms for Quality of Service. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  2. 2.
    Verma, D.: Supporting Service Level Agreement on IP Networks. McMillan Publishing (1999)Google Scholar
  3. 3.
    Davie, B., Rekhter, Y.: MPLS: Multiprotocol Label Switching Technology and Applications. Morgan Kaufmann, USA (2000)Google Scholar
  4. 4.
    Moy, J.: RFC 2328: OSPF version 2 (April 1998)Google Scholar
  5. 5.
    ThomasII, T.M.: OSPF Network Design Solutions. Cisco Press (1998)Google Scholar
  6. 6.
    Fortz, B., Thorup, M.: Internet Traffic Engineering by Optimizing OSPF Weights. In: Proceedings of IEEE INFOCOM., pp. 519–528 (2000)Google Scholar
  7. 7.
    Medina, A., et al.: Traffic matriz estimation: Existing techniques and new directions. Computer Communication Review 32(4), 161–176 (2002)CrossRefGoogle Scholar
  8. 8.
    Ravindra, et al.: Network Flows. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  9. 9.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Moy, J.: OSPF, Anatomy of an Internet Routing Protocol. Addison Wesley, Reading (1998)Google Scholar
  11. 11.
    Bolch, G., et al.: Queueing Networks and Markov Chains - Modeling and Performance Evaluation with Computer Science Applications. John Wiley and Sons inc., Chichester (1998)MATHGoogle Scholar
  12. 12.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)MATHGoogle Scholar
  13. 13.
    Medina, A., et al.: BRITE: Universal Topology Generation from a User’s Perspective. Technical Report 2001-003 (January 2001)Google Scholar
  14. 14.
    Ericsson, M., Resende, M.G.C., Pardalos, P.M.: A Genetic Algorithm for the Weight Setting Problem in OSPF Routing. J. of Combinatorial Optimization 6, 299–333 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation 3(1), 1–16 (1995)CrossRefGoogle Scholar
  16. 16.
    Coello Coello, C.A.: Recent Trends in Evolutionary Multiobjective Optimization, pp. 7–32. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Psenak, P., et al.: Multi-topology (mt) routing in ospf (internet draft) (January 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pedro Sousa
    • 1
  • Miguel Rocha
    • 1
  • Miguel Rio
    • 2
  • Paulo Cortez
    • 3
  1. 1.Dep. of InformaticsUniversity of MinhoPortugal
  2. 2.Dep. of Electronic and Electrical EngineeringUniversity College LondonUK
  3. 3.Dep. of Information SystemsUniversity of MinhoPortugal

Personalised recommendations