Sound Computational Interpretation of Symbolic Hashes in the Standard Model

  • Flavio D. Garcia
  • Peter van Rossum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4266)


This paper provides one more step towards bridging the gap between the formal and computational approaches to the verification of cryptographic protocols. We extend the well-known Abadi-Rogaway logic with probabilistic hashes and we give a precise semantic interpretation to it using Canetti’s oracle hashes. These are probabilistic polynomialtime hashes that hide all partial information. Finally, we show that this interpretation is computationally sound.


Hash Function Encryption Scheme Random Oracle Security Parameter Cryptographic Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AJ01]
    Abadi, M., Jürjens, J.: Formal eavesdropping and its computational interpretation. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 82–94. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. [AR02]
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)zbMATHMathSciNetGoogle Scholar
  3. [BDJR97]
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp. 394–405. IEEE, Los Alamitos (1997)Google Scholar
  4. [BPW06]
    Backes, M., Pfitzmann, B., Waidner, M.: Limits of the reactive simulatability/UC of Dolev-Yao models with hashes. Cryptology ePrint Archive, Report 2006/014 (2006),
  5. [BR93]
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proceedings of the 1st ACM CCS, pp. 62–73. ACM Press, New York (1993)Google Scholar
  6. [Can97a]
    Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997)Google Scholar
  7. [Can97b]
    Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. Cryptology ePrint Archive, Report 1997/007 (1997),
  8. [CMR98]
    Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions (preliminary version). In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC 1998), pp. 131–140. ACM Press, New York (1998)CrossRefGoogle Scholar
  9. [DY83]
    Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–208 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [GB01]
    Goldwasser, S., Bellare, M.: Lecture Notes on Cryptography (2001),
  11. [Gol01]
    Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  12. [GR06]
    Flavio, D.G., van Rossum, P.: Sound computational interpretation of formal hashes. Cryptology ePrint Archive, Report 2006/014 (2006),
  13. [Her05]
    Herzog, J.: A computational interpretation of Dolev -Yao adversaries. Theoretical Computer Science 340(1), 57–81 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [MP05]
    Micciancio, D., Panjwani, S.: Adaptive security of symbolic encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 169–187. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. [MW04]
    Micciancio, D., Warinschi, B.: Completeness theorems of the Abadi-Rogaway logic of encrypted expressions. Journal of Computer Security 12(1), 99–129 (2004)Google Scholar
  16. [PW00]
    Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive systems. In: Proceedings of the 7th ACM CCS, pp. 245–254 (2000)Google Scholar
  17. [RS04]
    Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Flavio D. Garcia
    • 1
  • Peter van Rossum
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenThe Netherlands

Personalised recommendations