Visibility Analysis on the Web Using Co-visibilities and Semantic Networks

  • Peter Kiefer
  • Klaus Stein
  • Christoph Schlieder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4289)


Monitoring public attention for a topic is of interest for many target groups like social scientists or public relations. Several examples demonstrate how public attention caused by real-world events is accompanied by an accordant visibility of topics on the web. It is shown that the hitcount values of a search engine we use as initial visibility values have to be adjusted by taking the semantic relations between topics into account. We model these relations using semantic networks and present an algorithm based on Spreading Activation that adjusts the initial visibilities. The concept of co-visibility between topics is integrated to obtain an algorithm that mostly complies with an intuitive view on visibilities. The reliability of search engine hitcounts is discussed.


Search Engine Visibility Analysis Climate Policy Semantic Relation Semantic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gans, H.J.: Deciding What’s News: A Study of CBS Evening News, NBC Nightly News, ‘Newsweek’ and ‘Time’, 25th anniversary edn. Northwestern University Press, Evanston (2005)Google Scholar
  2. 2.
    Yungwook, K.: Measuring the economic value of public relations. Journal of Public Relations Research 13, 3–26 (2001)CrossRefGoogle Scholar
  3. 3.
    Falkinger, J.: Attention economies. CESIFO Working Paper No. 1079, ifo Institut für Wirtschaftsforschung, München (2003)Google Scholar
  4. 4.
    Kiefer, P., Stein, K.: Visibility analysis on the web as an indicator for public relations and marketing evaluation. In: Proc. of Intelligent Agents, Web Technology and Internet Commerce (IAWTIC 2005). IEEE Computer Society Publishing, Los Alamitos (2005)Google Scholar
  5. 5.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)Google Scholar
  6. 6.
    Quillian, R.: Semantic memory. In: Minsky, M. (ed.) Semantic Information Processing, pp. 227–270. MIT Press, Boston (1968)Google Scholar
  7. 7.
    Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychological Review 82, 407–428 (1975)CrossRefGoogle Scholar
  8. 8.
    Lausen, G., Ziegler, C.N.: Spreading activation models for trust propagation. In: IEEE International Conference on e-Technology, e-Commerce, and e-Service (EEE 2004), pp. 83–97 (2004)Google Scholar
  9. 9.
    Preece, S.: A spreading activation network model for information retrieval. PhD thesis, CS Dept., Univ. of Illinios, Urbana, IL (1981)Google Scholar
  10. 10.
    Crestani, F.: Applications of spreading activation techniques in information retrieval. Artificial Intelligence Review 11, 453–482 (1997)CrossRefGoogle Scholar
  11. 11.
    Ceglowski, M., Coburn, A., Cuadrado, J.: Semantic Search of Unstructured Data using Contextual Network Graphs. National Institute for Technology and Liberal Education (2003)Google Scholar
  12. 12.
    Mayr, P., Tosques, F.: Google Web APIs - an instrument for webometric analyses? In: Poster presented at ISSI 2005 (2005),
  13. 13.
    Véronis, J.: Web: Google’s counts faked? Blog, see also follow-up messages (2005),
  14. 14.
    Baeza-Yates, R., Saint-Jean, F., Castillo, C.: Web structure, age and page quality. In: Proceedings of the 2nd International Workshop on Web Dynamics (WebDyn 2002) (2002),
  15. 15.
    Brewington, B.E., Cybenko, G.: How dynamic is the Web? Computer Networks (Amsterdam, Netherlands: 1999) 33, 257–276 (2000)Google Scholar
  16. 16.
    Russel, S., Norvig, P.: Probabilistic Reasoning. In: Artificial Intelligence: A Modern Approach, ch. 14, pp. 492–536. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  17. 17.
    Kiefer, P.: Computational analysis of the visibility of themes in internet-based communication processes, in German: Softwaregestützte Analyse der Sichtbarkeit von Themen in internetbasierten Kommunikationsprozessen. Diploma thesis, Chair for Computing in the Cultural Sciences, Bamberg University, Bamberg (2005)Google Scholar
  18. 18.
    Etzioni, O., Cafarella, D., Downey, D., Popescu, A.M., Shaked, T., Soderland, S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence, 91–134 (2005)Google Scholar
  19. 19.
    Turney, P.: Mining the web for synonyms: Pmi-ir versus lsa on toefl. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 491–502. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Magnini, B., Negri, M., Tanev, H.: Is it the right answer? Exploiting web redundancy for answer validation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 425–432 (2002)Google Scholar
  21. 21.
    Richter, M.: Analysis and visualization for daily newspaper corpora. In: Proc. of RANLP, pp. 424–428 (2005)Google Scholar
  22. 22.
    Malsch, T., Schlieder, C., Kiefer, P., Lúbcke, M., Perschke, R., Schmitt, M., Stein, K.: Communication between process and structure: Modelling and simulating message-reference-networks with COM/TE. Journal of Artificial Societies and Social Simulation (accepted, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Kiefer
    • 1
  • Klaus Stein
    • 1
  • Christoph Schlieder
    • 1
  1. 1.Laboratory for Semantic Information ProcessingOtto-Friedrich-University BambergGermany

Personalised recommendations