Relative Color Polygons for Object Detection and Recognition

  • Thi Thi Zin
  • Sung Shik Koh
  • Hiromitsu Hama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4259)


This paper proposes a new framework of the color model for outdoor scene image detection and recognition. This model enables us to manipulate easily the color of an image. Here, the concept of ‘relative color polygon’ for an object composed of uniform color regions is introduced on a 2D color space (XY space). Then the color similarity is defined using three kinds of parameters of the polygon: length and slope of every side and angle of adjacent sides. This paper addresses how to decide the color similarity by using the facts about color shifting on the XY space. The feasibility of the proposed framework has been confirmed through the experimental results using outdoor scene images taken under a great variety of various illumination conditions.


Color Space Object Detection Illumination Condition Illumination Change Color Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swain, M.J., Ballard, D.H.: Color Indexing. International Journal of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  2. 2.
    Vitabile, S., Pollaccia, G., Pilato, G., Sorbello, E.: Road Signs Recognition Using a Dynamic pixel aggregation Technique in the HSV Color Space. In: Proc. of 11th International Conference on Image Analysis and Processing, Palermo, Italy, pp. 572–577 (2001)Google Scholar
  3. 3.
    Sekanina, L., Torresen, J.: Detection of Norwegian Speed Limit Signs. In: Proc. of 16th European Simulation Multi-conference, Darmstadt, Germany, pp. 337–340 (2002)Google Scholar
  4. 4.
    Buluswar, S., Draper, B.: Color Recognition in Outdoor Images. In: Proc. of the International Conference on Computer Vision, pp. 171–177 (1998)Google Scholar
  5. 5.
    Nikolaev, D.P., Nikolayev, P.P.: Linear Color Segmentation and its Implementation. Computer Vision and Image Understanding 94, 115–139 (2004)CrossRefGoogle Scholar
  6. 6.
    Todt, E., Torras, C.: Color-Contrast Landmark Detection and Encoding in Outdoor Images. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 612–619. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Tominaga, S.: Natural image database and its use for scene illuminant estimation. Journal of Electronic Imaging 11(5), 434–444 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Funt, B.V., Finlayson, G.D.: Color Constant Color Indexing. IEEE Trans. on PAMI 17(5), 522–529 (1995)Google Scholar
  9. 9.
    Syeda-Mahmood, T., Cheng, Y.Q.: Indexing Colored surfaces in images. In: Proc. of International Conference on Pattern Recognition, Vienna, Austria, vol. 3, pp. 8–12 (1996)Google Scholar
  10. 10.
    Colorimetric Observers, ISO/CIE Std. 10 527 (1986)Google Scholar
  11. 11.
    Cheng, Y.S.H.D., Jiang, X.H., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    de la Escalera, A., Moreno, L., Salichs, M.A., Armingol, J.M.: Road Traffic Sign Detection and Classification. IEEE Trans. on Industrial Electronics 44(6), 848–859 (1997)CrossRefGoogle Scholar
  13. 13.
    Piccioli, G., De Micheli, E., Parodi, P., Campani, M.: Robust method for road sign detection and recognition. Image and Vision Computing 14(3), 209–223 (1996)CrossRefGoogle Scholar
  14. 14.
    Zin, T.T., Liao, C., Kaneko, T., Yanagihara, Y., Hama, H.: Recognition of Road Environment by Using Color Information from Moving Video Images. In: Proc. of the 7th Image Media Processing Symposium, pp. 109–110 (2002)Google Scholar
  15. 15.
    Shadeed, W.G., Abu-Al-Nadi, D.I., Mismar, M.J.: Road traffic Sign Detection in Color Images. In: Proc. of the 10th IEEE International Conference on Electronic, Circuits and Systems, vol. 2, pp. 890–893 (2003)Google Scholar
  16. 16.
    Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge (1969)MATHGoogle Scholar
  17. 17.
    Shimura, M.: Pattern Recognition and Learning Machines. Syokodo Press (1970)Google Scholar
  18. 18.
    Zin, T.T., Hama, H.: A Robust Road Sign Recognition Using Segmentation with Morphology and Relative Color. The Journal of the Institute of Image Information and Television Engineers 59(9), 1333(81)–1342(90) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thi Thi Zin
    • 1
  • Sung Shik Koh
    • 1
  • Hiromitsu Hama
    • 1
  1. 1.Graduate School of EngineeringOsaka City UniversityOsaka-shiJapan

Personalised recommendations